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Ten years have passed since Daryl Bem began circulating a preprint of his now infamous paper 

in which he claimed evidence for precognition – a phenomenon whereby future events can 

implicitly affect a person's present behaviors, even without a person's conscious awareness. This 

unbelievable result – which Bem operationalized as his subjects' ability to correctly predict the 

position of pictures on a computer screen at rates significantly greater than chance – was 

ultimately responsible for a host of methodological revolutions in our field. Since that time, 

considerable energy has gone into arguing for the merits of "open science", preregistration of 

studies, and a closer look at the statistical training of students and researchers, including calls for 

abandoning the use of p-values for hypothesis testing. 

 

By now, one of the more familiar alternatives to traditional null hypothesis testing is Bayesian 

hypothesis testing. Despite increasing familiarity, Bayesian methods are still relatively under-

utilized in psychology and are virtually absent from most courses in psychological statistics. I 

think this is quite unfortunate, as the core tenets of Bayesian inference are actually easier to 

understand than the traditional null-hypothesis-testing alchemy that we all grew up with. My 

goal in this column is to convince everyone that this statement is indeed true. 

 

So where to start? Let's start with the familiar. Most readers will have some experience with 

hypothesis testing, and particularly the notion of a p-value, which we are taught to use as a 

magical dowsing rod for ascertaining whether something is "significant." Let's explore this a bit 

deeper. When we want to back up some quantitative statement – say, that the difference between 

two group means is significant – we formally proceed by defining two hypotheses: a null 

hypothesis H0 which states that there is no difference between the means, and an alternative 

hypothesis H1 which states that there is some difference. Then we collect some data, because we 

want to test how well these hypotheses hold up as models of our observed data. One way to do 

this is to assume the null is true, then calculate the probability of observing our data under H0. 

This probability is the p-value, and traditional practice dictates that we determine whether this 

probability is small (i.e., less than 5%). If so, we say that our data is rare under H0, and so we 

reject H0 in favor of the alternative H1. In short, we look for a difference in the group means by 

assuming that there is no difference, then showing that our (actually observed) data is 

implausible under such a hypothesis, rendering the null hypothesis itself implausible. 

 

Two issues arise immediately. First, our evidence for H1 (the model we actually care about in 

this situation) is indirect. We've shown that the null is not a good fit for our observed data – that's 

what the p-value shows – but nowhere have we actually assessed how well the alternative fits 

our data. Second, suppose we fail to reject H0 (presumably because p > 0.05). As anyone who 

has taught undergraduate statistics knows by heart (because he or she has explained this 

countless times), simply failing to reject the null does not permit one to conclude support for the 

null. In these ways, the traditional null hypothesis testing procedure is lacking. 

 

https://psycnet.apa.org/record/2011-01894-001
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550299/
https://www.psychologicalscience.org/publications/observer/obsonline/what-is-preregistration-anyway.html
https://psycnet.apa.org/record/2011-01895-001
https://psycnet.apa.org/record/2011-01895-001


Bayesian hypothesis testing, on the other hand, takes care of these problems easily. At its 

simplest, Bayesian hypothesis testing replaces the p-value with the Bayes factor. To understand 

what a Bayes factor is, let's compare it to the p-value. Whereas the p-value tells us the likelihood 

of the data under the null hypothesis alone, the Bayes factor tells us the relative likelihood of the 

data under both H0 and H1. As the Bayes factor simultaneously compares two hypotheses, we 

must have some way to specify which hypothesis is being supported. We do this by specifying 

the "direction" of the Bayes factor with a subscript. For example, BF10 represents the Bayes 

factor for the alternative H1 over the null H0. On the other hand, BF01 represents the Bayes factor 

for the null H0 over the alternative H1.  

 

Modern software packages such as JASP (which is freely downloadable at https://www.jasp-

stats.org) make it simple for anyone to compute Bayes factors. Most of the common statistical 

tests you're already familiar with have Bayesian versions in JASP. The key to getting started is 

knowing how to interpret the Bayes factor. So, let's suppose we did a Bayesian independent 

samples t-test, and our data produced a Bayes factor of BF10 = 20. This means that the observed 

data are 20 times more likely under the alternative hypothesis H1 than the null hypothesis H0. 

Notice that instead of simply using a small p-value to reject the null as ill-suited to explain our 

observed data, we are reporting a relative degree of fit for both hypotheses. This Bayes factor 

tells us directly that the alternative hypothesis fits our data 20 times better than the null 

hypothesis. I think such statements are much easier to interpret, and in my experience, students 

have an easy time getting this too. Also, and perhaps most importantly, it is entirely possible that 

our data could instead be evidential for the null – for example, if we got BF01 = 20, that would 

mean that the data were 20 times more likely under the null than the alternative. Traditional null 

hypothesis testing simply cannot do this. 

 

Once you started computing and interpreting Bayes factors for your own data, one natural 

question is "How big does the Bayes factor need to be?" After all, we are taught guidelines for 

how small a p-value must be in order to separate signal from noise. What sizes should we expect 

for Bayes factors? Remember, the Bayes factor is a ratio, so the "smallest" value we should get is 

BF10 = 1, which would mean that the data were equally likely under both the alternative and the 

null. In this case, we don't have any compelling evidence in favor of either model. A common 

recommendation is to consider a Bayes factor greater than 3 as representing positive evidence in 

favor of one hypothesis over the other. This is because having at least 3-to-1 odds in favor of a 

specific hypothesis equates to a posterior probability of at least 75% in favor of that hypothesis. 

My recommendation is to not worry about specific thresholds beyond this – simply report the 

value of the Bayes factor and tell the reader exactly what it means. 

 

At this point, I invite you to start doing some Bayesian analyses of your own! Here, I've only 

scratched the surface of Bayesian hypothesis testing, but I've hopefully piqued your interest. 

There are plenty of resources to help you learn more, including this special issue of Psychonomic 

Bulletin & Review and my own recently published tutorial paper. Further, I usually offer 

workshops on Bayesian statistics at SWPA every year, so I will look forward to meeting you in 

one of those workshops. Feel free to send your Bayesian questions my way any time, or even 

invite me to give a workshop at your own university! You can email me at 

faulkenberry@tarleton.edu. 

https://www.jasp-stats.org/
https://www.jasp-stats.org/
https://link.springer.com/journal/13423/volumes-and-issues/25-1
https://jnc.psychopen.eu/article/view/288

