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Much knowledge about how the mind does mathematics is based on the traditional, computer-
based metaphor of cognition that assumes cognition is stage-based and independent of the motor 
cortex.  In the present study, I provide evidence for an alternative view.  I recorded participants’  
hand movements as they chose the correct parity (odd/even) for single-digit numerals. 
Distributional analyses of these movements indicated that responses resulted from competition 
between parallel and partially-active mental representations rather than occurring in discrete 
stages. Furthermore, this competition was carried through to the motor cortex, indicating that 
numerical representations are more tied to bodily affordances than previously thought.  
  

 Researchers have been investigating mathematics learning for many years, particularly 

through the paradigm of cognitive psychology.  From early attempts to understand how 

arithmetic facts are organized (Ashcraft & Battaglia, 1978) to formal models that specify the 

various cognitive processes involved in mathematical problem solving (Anderson, 2005), most 

of these studies have made the implicit (albeit, metaphorical) assumption that the mind operates 

like a computer.  That is, perception informs cognition, and cognition informs action.  In this 

view, higher-level cognitive systems (memory, executive control, etc.) are thought to be quite 

separate from the lower-level systems (perception, motor action). 

 This modular, discrete-systems approach to cognition has been the fundamental underpinning 

of most of our understanding of how the mind does mathematics.  From the point of view of 

“mathematics  is  a  collection  of  abstract  ideas,”  it  makes  sense  that  mathematical  objects  could  be  

learned and operated on in a purely abstract fashion without any interaction with other (non-

cognitive) neural systems, such as the motor cortex.  However, Lakoff and Nunez (2000) 

proposed the hypothesis that mathematics is learned through conceptual metaphor, a mechanism 

for converting embodied (sensori-motor) reasoning to abstract reasoning.  At the time, 

unfortunately, their view was almost entirely philosophical, and it elicited much debate between 

cognitive scientists and mathematicians.  Without behavioral evidence, the debate would be sure 

to stay within the realm of philosophy, and as such, not be widely accepted among 

mathematicians and psychologists alike. 

 In recent years, however, other cognitive scientists have proposed a view similar to that of 



   

Proceedings of the 40th Annual Meeting of the Research Council on Mathematics Learning 2013   206 
 

Lakoff and Nunez:  specifically, that the human mind is not a modular computer, but rather a 

rich, dynamic system of parallel and partially-active representations (Spivey, 2007).  In this 

view,  decisions  are  not  made  through  modular  “switches,”  but  instead  are  the  result  of  

competition among many different partially-activated responses, simultaneously informed by 

feedback from many other systems, including (especially) the motor systems. 

 The canonical example of this view is found in the language-processing literature (Spivey, 

Grosjean, & Knoblich, 2005).  In a language-comprehension task, they asked participants to 

listen to words and, with a computer mouse, choose the picture that correctly represented the 

spoken word.  During this task, they measured participants' hand positions by continuously 

recording the (x,y) coordinates of their mouse.  They found that when words were phonetically 

similar (CANDY versus CANDLE, see Figure 1), the mouse tracks tended to deviate toward the 

incorrect alternative early in the response process, but eventually settle in to the correct answer.  

This is commonly taken as evidence for an embodied view of cognition, where responses result 

from a dynamic competition between partially-active, unstable mental representations.  In the 

classic, modular view of cognition, the hand positions would not be so sensitive to influence 

from the decision process, as the motor system would not be called upon until the decision was 

made in the language center of the brain. 

 Until now, no studies have investigated the processing of numerical information within such 

a continuous, embodied-cognition framework.  This is unfortunate, as the work of Lakoff and 

Nunez (2000) has set the stage for such research to tease apart the contributions of different 

cognitive and perceptual systems to numerical cognition.  In the present study, I used the hand-

tracking paradigm of Spivey (2007) to capture the formation of numerical representations during 

a parity judgment task.  Participants quickly judged whether single digit numbers were even or 

odd.  Responses were either consistent with spatial orientation of numbers (i.e., small numbers 

on left side or large numbers on right side) or inconsistent (i.e., small numbers on right side, 

large numbers on left side.  Two competing predictions were then tested.  If numerical cognition 

is indeed part of an embodied system, then hand trajectories in the inconsistent condition should 

show a pull in the direction of the incorrect alternative, reflecting a settling of partial activations 

of response alternatives during the response.  If, on the other hand, numerical cognition is  
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modular and stage-based, then we should see little attraction toward the incorrect alternatives, 

since the incompatibility would be resolved before the motor output stage. 

Method 
Participants 
 45 undergraduate students (35 female, mean age 24.3 years) participated in the present study. 

Stimuli and Procedure 
 Single digit numerals (excluding 5, as is common in the numerical processing literature) were 

presented on a computer screen using the software package MouseTracker (Freeman & Ambady, 

2010).  Participants were told that, on every trial, a number would appear in the center of the 

screen, and they would be asked to choose, as quickly as possible, whether the number was even 

or  odd.    After  participants  clicked  a  “Start”  button  centered  at  the  bottom  of  the  screen,  response  

labels  “Even”  and  “Odd”  appeared  at  the  top  left  and  right  of  the  screen  (the  order of these labels 

was switched once midway through the experiment).   Participants then clicked on the correct of 

these two options; while doing this, I recorded the streaming (x,y) coordinates of the computer 

mouse approximately 70 times per second.  Each participant completed 640 trials.  This yielded a 

rich data set of hand trajectories, which in the spirit of Spivey and colleagues (2005) directly  

reflects the mental processes that occurred during the numerical decision making process. 

 

Figure 4: Words that are phonological similar (candy 
versus candle) show a competition throughout the 
response. 



   

Proceedings of the 40th Annual Meeting of the Research Council on Mathematics Learning 2013   208 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Results and Discussion 

 All hand trajectories were rescaled into a standard coordinate space, [-1,1] x [0,1.5].  To 

analyze movements independent of reaction times, I used linear interpolation to normalize all 

trajectories to consist of 101 times steps.  This is important so that trajectories of differing time 

scales can be averaged over multiple trials.  In addition, for ease of visualization, all trajectories 

for responses on the right-hand side of the screen were reflected to the left side of the screen.  

 The first analysis is with respect to the hand trajectories in each of two spatial compatibility 

conditions.  On consistent trials, participants responded to small numbers (1,2,3,4) on the left 

side of the screen and large numbers (5,6,7,8) on the right side of the screen.  On inconsistent 

trials, these were reversed.  These conditions are motivated by the robust finding that most 

English-speaking adults have an implicit left-right number orientation (Dehaene, Bossini, & 

Giroux, 1993).   

Figure 5: Average hand trajectories during the numerical parity task, 
separated as a function of spatial compatibility. 
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 To analyze the hand trajectories, I computed an average trajectory across all participants for 

each of the two spatial compatibility conditions.  As can be seen in Figure 2, hand trajectories in 

the  inconsistent  condition  are  a  bit  “pulled  away”  from  the  trajectories  for  the  consistent  

condition.  One interpretation of this is that the trajectories in the inconsistent condition 

continuously attracted toward the incorrect response alternative throughout much of the 

response, indicating a high degree of competition between the two response alternatives.  Indeed, 

across all trials, the average trajectory was significantly closer in proximity to the incorrect 

response alternative from the 32nd to the 74th time step.    

 For a trial-by-trial index of the degree to which the incorrect response alternative was 

partially active, I computed the maximum deviation: the largest positive x-coordinate deviation 

from an ideal response trajectory (a straight line between the start button and the response) for 

each of the 101 time steps.  As indexed by maximum deviation, trajectories for inconsistent 

responses (M=0.56, SE=0.02) were significantly more attracted to the incorrect response 

alternative, compared with trajectories for consistent responses (M=0.50, SE=0.02), t(44)=6.41,  

p < 0.0001.   

 Across both measures, the data reflect that during the numerical decision process, 

participants formed partially-active representations of both response alternatives until the 

“winning”  representation  was  stabilized  and  the  correct  answer  was  chosen.    Initially,  this  seems  

to support the embodied view of cognition.  However, an alternative explanation could instead 

explain the data.  It could be the case that the smooth, continuous attraction we are seeing is the 

result of averaging across trials.  For example, if some trials showed zero attraction (i.e., the 

participants' hands moved directly toward the correct answer) and other trials were sharply 

deflected midflight after realization of an error, the appearance of the average trajectories would 

be smooth even though the cognitive processes involved were modular (that is, motor responses 

were not initiated until the decision was made).  In this case, if we were to look at the 

distribution of the maximum deviation values, it would be distinctly bimodal; simply put, some 

of the values would be small (indicating direct trajectories) and others would be large (reflecting 

the midflight correction of an almost incorrect response). 

 To test whether this is the case, I performed a distributional analysis on the collection of 

maximum deviation values across all trials.  Each of the 28,800 values (640 values for each of 45 

participants) was converted to a z-score.  Figure 3 depicts the distribution of these maximum  
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deviation values for both consistent and inconsistent trials.  Notice, critically, that the 

inconsistent trials do not differ in shape from the consistent trials, nor do they appear bimodal.  

Modality analysis confirms that the distribution of inconsistent trials is indeed not bimodal: the 

computed coefficient of bimodality was 0.423, with b > 0.555 representing the minimum value 

for a distribution to be considered bimodal.  Also, a Kolmogorov-Smirnov test confirms that the 

distribution of values on consistent trials is not significantly different from those in inconsistent 

trials (z =1.33, p > 0.06).  These data indicate that the distribution of maximum deviation values 

is not bimodal, and that the smooth, continuous attraction away from the correct answer in the 

inconsistent trials is not the result of participants’  quickly  correcting  their  fast,  incorrect  initial  

responses.   

 In summary, we found an interesting pattern of responses when people are making quick 

judgments about the parity of a number (whether it is even or odd). Particularly, the size of the 

number affects the dynamics of our hand responses (even though the size is irrelevant to the 

task).  This effect was captured by looking at the streaming path of computer mouse coordinates 

as participants selected the correct response label (even or odd).  There seemed to be an 

Figure 6: Distributions of maximum deviation values for consistent and 
inconsistent trials 
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automatic activation of numerical size that was carried out in participants hand movements (see 

Figure 2).  This directly supports the hypothesis of embodied cognition.  However, this pattern 

could  have  also  resulted  from  an  “averaging”  across  trials;;  on  inconsistent  trials,  the  mouse  

movement could have initially been in the wrong direction, then immediately corrected midflight 

to the correct response alternative.  However, an trial-by-trial analysis rules this possibility out 

(see Figure 3). 

 Together, these results comprise an important first step in establishing the embodiment of 

numerical cognition.  From the work of Lakoff and Nunez (2000), an important philosophical 

claim was made: mathematics is entirely the creation of humans using entirely human qualities.  

In  other  words,  mathematics  as  we  know  it  could  not  have  been  “invented”  without  the  bodily   

affordances that make us human.  While this claim may seem more the realm of philosophers 

and science fiction writers, the present results provide some evidence that even numerical 

decisions are intimately tied to our bodily states.   

General Discussion 
 The results of the present study indicate that numerical processing does not take place 

independently from our bodily states.  Specifically, we found that when tracking hand 

movements in even the most simple task (a parity judgment task), the hand movements reflected 

a continuous, dynamic system of partially activated cognitive states that would not be possible in 

the traditional, computer-based metaphor of mind.   

 At first, it may be difficult to see how these results relate to discussions in mathematics 

education.  Indeed, the results from such research are valuable to mathematics educators because, 

together, they lend theoretical support to the idea of embodied mathematics.  Embodied 

mathematics  is  the  view  that  mathematics  is  not  completely  an  abstract,  or  “pure,”  discipline,  but  

rather is the product of a conceptual system that is ultimately grounded in bodily states.  In a 

sense,  this  “humanizes”  mathematics.    This kind of evidence also tells us that since mathematics 

is tied to our body-grounded conceptual systems, it should be taught from that point of view.  

That is, as Nunez and colleagues put it:  
“Students  (and  teachers)  should  know  that  mathematical  theorems, proofs, and objects 

are about ideas, and that these ideas are situated and meaningful because they are 

grounded  in  our  bodily  experience  as  social  animals.”  (Nunez,  Edwards,  &  Matos,  1999,  

p. 62). 
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