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Abstract

Traditional models of numerical cognition are based on the computer-

based metaphor of cognition that assumes numerical judgements are

stage-based and independent of bodily e�ectors. However, recent stud-

ies have indicated that the traditional metaphor may be inadequate for

describing the processes involved in numerical decisions. In the present

study, I provide further evidence that number processing proceeds in a

continuous, competitive manner tightly coupled with feedback from the

motor system. 45 adult participants’ hand movements were recorded

as they used a computer mouse to choose the correct parity (odd/even)

for single-digit numerals. Distributional analyses of these hand move-

ments indicated that responses resulted from competition between par-

allel and partially-active mental representations rather than occurring

in discrete stages.
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(Ashcraft & Battaglia, 1978) to formal models that specify the cognitive processes

involved in mathematical problem solving (Anderson, 2005), most of these studies

have made the implicit (albeit, metaphorical) assumption that the mind operates

like a computer (Fodor, 1983). That is, perception informs cognition, and cognition

informs action. In this view, higher-level cognitive systems (memory, executive con-

trol, etc.) are thought to be quite separate from the lower-level systems such as

sensation/perception and those responsible for motor a�ordances.

This modular, discrete-systems approach to cognition has been the fundamental

underpinning of most of our understanding of how the mind does mathematics. If

one starts with the generally accepted axiom that mathematics is a collection of

abstract ideas, then it should make sense that mathematical objects could be learned

and operated on in a purely abstract fashion without any interaction with other

(non-cognitive) neural subsystems, such as the motor cortex. However, Lako� and

Núñez (2000) proposed that mathematics is learned through conceptual metaphor,

a mechanism for converting embodied, sensorimotor reasoning to abstract reasoning.

At the time, much of their argument was almost entirely philosophical, and it elicited

much debate between cognitive scientists and mathematicians. Without converging

behavioral evidence, the debate would be sure to stay within the realm of philosophy,

and as such, not be widely accepted among mathematicians and psychologists alike.

In recent years, cognitive scientists working in other areas have proposed a sim-

ilar view that the human mind is not a modular computer, but rather a rich, dynamic

system of competing parallel and partially-active representations (Spivey, 2007; Free-

man, Dale, & Farmer, 2011). In this “cognition-as-competition” view, decisions are

not made through modular processes akin to “switches,” but instead are the result

of competition among many di�erent partially-activated responses, simultaneously

informed by feedback from many other systems, including the motor systems. This

framework highly related to embodied cognition, where the bodily a�ordances such

as sensors and e�ectors actually contribute to the processes involved in cognition,

rather than simply serving as end points in a linear processing chain (see Barsalou,

1999; Wilson, 2002).

A seminal example of the continuous, cognition-as-competition view can be

found in the language-processing literature (Spivey, Grosjean, & Knoblich, 2005). In

a language-comprehension task, Spivey et al. asked participants to listen to words

and, with a computer mouse, choose the picture that correctly represented the spoken

word. During this task, they measured participants’ hand positions by continuously

recording the (x, y)-coordinates of the computer mouse as it traveled on the screen

while participants made their choice. They found that when words were phonetically

similar (e.g., CANDY versus CANDLE), the mouse tracks tended to deviate toward

the incorrect alternative early in the response process, but eventually settle in to the

correct answer. This is commonly taken as evidence for an embodied view of cognition,

where responses result from a dynamic competition between partially-active, unstable

mental representations. Contrasted with the classic, modular view of cognition, the
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hand positions would not be so sensitive to influence from the decision process, as the

motor system would not be called upon until the decision was made in the language

center of the brain.

The idea that numerical processing may be tightly coupled to bodily a�ordances

is not entirely new. One of the more robust results in numerical cognition research

is the SNARC e�ect (Spatial-Numerical Association of Response Codes; Dehaene,

Bossini, and Giraux, 1993). Participants elicit a SNARC e�ect in tasks that require

a left-hand or right-hand response to a numerical stimulus; specifically, people tend

to respond faster to small numbers with the left hand and to large numbers with the

right hand (although, the specific mapping seems to be highly dependent on culture

(e.g., Shaki, Fischer, and Petrusic, 2009). The e�ect is often taken as evidence for an

implicit spatial arrangement of a mental number line.

Indeed, recent computational models of numerical decision processes (e.g., Gev-

ers, Verguts, Reynvoet, Caessens, and Fias, 2006) have built in architecture that

allows for continuous competition between competing response codes that are si-

multaneously activated by numerical magnitude and the task instructions. While the

model does not make specific predictions about response trajectories that participants

would make while completing numerical decision tasks, the underlying dual-route ar-

chitecture is clearly in the spirit of the “cognition-as-competition” view. Along this

line, Santens, Goossens, and Verguts (2011) explicitly measured response trajectories

as participants completed a magnitude comparison task (deciding whether presented

numbers were greater than or less than 5). They found that hand trajectories curved

more greatly as a function of decreasing distance from 5, indicating that numbers

that were closer to 5 in magnitude engendered more competition between numerical

codes. In a similar experiment, Song and Nakayama (2008) found data that mirrored

those of Santens et al. (2011). However, Song and Nakayama (2008) interpreted their

results in terms of visuo-spatial representations of number along a mental number

line. Whereas Santens et al. (2011) and Song and Nakayama (2008) reach the same

conclusion with respect to visuo-spatial coding of numerical information (see also

Gevers et al., 2010), only Santens et al. (2011) interpret their results in terms of

competitive processing.

One limitation to the study of Santens et al. (2011) is that they did not address

one possible alternative explanation for their data. It is possible that curved trajec-

tories can result from averaging two types of extreme response trajectories (Freeman

& Dale, 2012): one path that is directly to the correct answer, and another path

that begins in the wrong direction (i.e., the participant is “tricked”), but is sharply

corrected in midflight. This type of behavior would result in a bimodal distribu-

tion of response trajectories. To conclude that curved trajectories really stem from

competitive processes, one must rule out this alternative.

In the present study, I used the hand-tracking paradigm of Spivey (2007) to

capture the temporal dynamics of the formation of numerical representations during a

parity judgement task. Participants quickly judged whether single digit numbers were
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even or odd. Responses were either consistent with spatial orientation of numbers

(i.e., small numbers on left side or large numbers on right side) or inconsistent (i.e.,

small numbers on right side, large numbers on left side). Two competing predictions

were then tested. If numerical decisions are reached via continuous, competitive

processes, then hand trajectories in the inconsistent condition should show a pull in

the direction of the incorrect alternative, reflecting a settling of partial activations of

competing response alternatives during the response. If, on the other hand, numerical

cognition is modular and stage-based, then we should see little attraction toward the

incorrect alternatives, since the incompatibility would be resolved before the motor

output stage.

Method

Participants

45 undergraduate psychology students (35 female, mean age 24.3 years) partic-

ipated in the present study for partial course credit. All participants reported being

right-hand dominant.

Stimuli and Procedure

Single digit numerals (excluding 5) were presented on a computer screen using

the software package MouseTracker (Freeman & Ambady, 2010), freely available as

a download from http://www.dartmouth.edu/~freemanlab/mousetracker/. Figure 1

depicts the sequence of stimuli in each experimental trial. Participants were told that

on every trial a number would appear in the center of the screen, and they would

be asked to choose, as quickly as possible, whether the number was even or odd.

Each trial started with a blank screen presented for 1000 ms, followed by a screen

that displayed the response labels EVEN and ODD at the top left and right of the

screen, respectively. The order of these labels was switched once midway through the

experiment; half of the participants started with the EVEN-ODD ordering, while the

other half began with the ODD-EVEN ordering. After 1000 ms, a START button

appeared. Once the START button was pressed, one of the stimulus numerals ap-

peared in the center of the screen. Participants then clicked on the correct of these

two options; while doing this, the software recorded the streaming (x, y) coordinates

of the computer mouse approximately 70 times per second.

To ensure that mouse trajectories would reflect as much online processing as

possible, participants were asked to begin moving their mouse as soon as possible.

If initial mouse movement did not begin within 250 ms, a message appeared on the

screen informing the participant to begin moving the mouse earlier. Each participant

completed 640 trials, consisting of each of the 8 stimulus numerals presented 40 times

over each response label ordering (2 blocks of 320 trials).

http://www.dartmouth.edu/~freemanlab/mousetracker/


COMPETITIVE PROCESSING IN NUMERICAL COGNITION 5

Figure 1 . An example trial presentation. Participants were asked to click on the

correct parity of the presented numeral. On half of the trials, the position of the

response labels EVEN and ODD were reversed.

Results

Participants completed 28,800 parity judgement trials. Of these, there were

only 259 errors (error rate = 0.9%). There were 117 errors in the consistent condition

and 142 errors in the inconsistent condition. As indexed by a 2-sample proportion

test, this di�erence in errors was not statistically significant, z = 1.6, p > 0.11. Error

trials were subsequently discarded and further analyses were performed only on the

remaining 28,541 correct trials.

Mean reaction times are presented in Table 1. Participants took 29 ms longer to

complete inconsistent trials compared to consistent trials, t(44) = ≠6.70, p < 0.001.

This di�erence was manifested as di�erences in actual movement duration as opposed

Table 1

Mean intial reaction times, movement durations, and total time (in ms)

as a function of number-space consistency (SE in parentheses)

Initial RT Movement time Total time

Consistent 80 (5) 953 (21) 1033 (21)

Inconsistent 81 (5) 981 (22) 1062 (21)
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to di�erences in time for initiation of mouse movement (80 vs 81 ms, t(44) = 0.80,

p > 0.4). While this di�erence reflects what would be predicted from the SNARC

e�ect, it is the trajectories during the response process that are of primary interest

in the present study.

As is common in hand tracking experiments (Freeman & Ambady, 2010), all

hand trajectories were rescaled into a standard coordinate space, [≠1, 1] ◊ [0, 1.5].
To analyze movements independent of reaction times, I used linear interpolation to

normalize all trajectories to consist of 101 time steps. This is important so that

trajectories of di�ering time scales can be averaged over multiple trials. In addition,

for ease of visualization, all trajectories for responses on the right-hand side of the

screen were reflected to the left side of the screen.

To analyze the hand trajectories, I computed an average trajectory across all

participants for each of the two spatial compatibility conditions. As can be seen in

Figure 2, hand trajectories in the inconsistent condition are a bit “drawn away” from

the trajectories for the consistent condition. This is consistent with the prediction

of Gevers et al. (2006) that inconsistent trials produce a conflict between magnitude

representations (e.g., 2=small) and visuo-spatial representations (e.g., small=left),

and resolution of this conflict manifests as a trajectory signature that appears as

attraction toward the incorrect alternative. This trajectory pattern indicates a high

degree of competition between the two response alternatives, as the average trajectory

was significantly closer in proximity to the incorrect response alternative from the

32nd to the 74th time step.

For a trial-by-trial index of the degree to which the incorrect response alter-

native was partially active, I computed the maximum deviation (MD): the largest

positive x-coordinate deviation from an ideal response trajectory (a straight line be-

tween the start button and the response) for each of the 101 time steps. MD values

were then averaged for each of the 45 participants by consistency condition and sub-

jected to a paired-samples t-test. As indexed by maximum deviation, trajectories

for inconsistent responses (M=0.56, SD=0.15) were significantly more attracted to

the incorrect response alternative, compared with trajectories for consistent responses

(M=0.50, SD=0.15), t(44) = 6.41, p < 0.0001. To assess the evidence in favor of

the hypothesis that MD values di�er significantly as a function of consistency con-

dition, I computed a JZS Bayes factor (Rouder, Speckman, Sun, Morey, & Iverson,

2009). The JZS Bayes factor for the present data was B

JZS
10 = 174, 550, indicating

considerable evidence that, at least as indexed by maximum deviation, trajectories

in the inconsistent condition are partially attracted toward the incorrect response

alternative before settling in to the correct response.

Across both measures, the data reflect that during the numerical decision pro-

cess, participants formed partially-active representations of both response alternatives

until the winning representation was stabilized and the correct answer was chosen.

Initially, this seems to support the hypothesized competition-driven view of numerical

cognition (Santens et al., 2011; Gevers et al., 2006). However, an alternative explana-
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Figure 2 . Mean hand trajectories as a function of consistency condition. The bar

graph shows trajectories maximum deviation from the ideal, straight-line trajectory

as a function of consistency condition (error bars represent standard errors of the

mean)

tion could instead explain the data. It could be the case that the smooth, continuous

attraction we are seeing is rather the result of averaging across trials (Spivey et al.,

2005; Freeman & Dale, 2012). For example, if some trials showed zero attraction (i.e.,

the participants’ hands moved directly toward the correct answer) and other trials

were sharply deflected midflight after realization of an error, the appearance of the av-

erage trajectories would be smooth even though the cognitive processes involved were

modular (that is, motor responses were not initiated until the decision was made). In

this case, if we were to look at the distribution of the maximum deviation values, it

would be distinctly bimodal; some of the values would be small (indicating direct tra-

jectories) and others would be large (reflecting the midflight correction of an initially

incorrect response).

To test whether this was the case, I performed a distributional analysis on the

collection of maximum deviation values across all trials. Figure 3 depicts the distri-

bution of these maximum deviation values for both consistent and inconsistent trials.
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Figure 3 . z-distribution of maximum deviations across 28,541 correct trials as a

function of consistency between response side and numerical size.

Notice, critically, that the distribution of inconsistent trials does not di�er in shape

from the consistent trials, nor does it appear bimodal. Further, I computed the bi-

modality coe�cient (SAS Institute Inc. 2012) for this distribution to be 0.423, which

is less than the minimum value of 0.555 that would represent a bimodal distribution.

In addition, I assessed bimodality by computing Hartigan’s dip statistic D (Hartigan

& Hartigan, 1985). The advantage of this statistic is that it is inferential; if p < 0.05,

the distribution is considered to be multimodal (Freeman & Dale, 2012). Using the R

package diptest (Maechler, 2013), I computed D = 0.0018, p > 0.99, confirming that

the distribution is not bimodal. Taken together, these data confirm that the distribu-

tion of maximum deviation values is not bimodal, and that the smooth, continuous

attraction away from the correct answer in the inconsistent trials is not the result of

participants’ quickly correcting their fast, incorrect initial responses.

Discussion

I found that numbers in a parity task triggered competing representations be-

longing to opposite response categories. This was supported by evidence indicating

that when numerical magnitude was inconsistent with the side of the screen on which

the correct response label was presented (e.g., a large odd number when “odd” was

presented on the left side of the screen), there was a continuous deflection toward

the incorrect response alternative that eventually settled before the correct response

was chosen. That is, both response alternatives were activated in parallel before the

correct response was chosen through a dynamic, winner-take-all process. This di-

rectly supports the hypothesis that numerical decisions occur within a continuous,
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competitive cognition framework (Gevers et al., 2006).

Furthermore, the present data provide a conceptual replication of the results of

Santens et al. (2011) with two additions. First, this is the first study to investigate

the continuous dynamics of numerical representations with a parity task (but see

Gevers et al., 2010). Second, and most importantly, in this study I explicitly test

the possibility that the curved trajectories that were present in Santens et al. (2011)

could have resulted from averaging across trials and do not really reflect the dynamic

convergence of competitive representations. Through bimodality analysis, I showed

that this is not the case: the present data could not have resulted from the averaging

of di�erent types of responses, but rather, from the competition and gradual settling

of partially active representations.

As a related alternative explanation, it may be the case that since participants

are quickly moving their hands forward at the beginning of a trial and then making a

decision while the hand is in motion, the di�erent trajectories simply reflect that the

decision in the inconsistent trials takes longer to complete. This explanation certainly

fits with the presented RT data and would not di�erentiate between stage-based and

continuous models. However, one should keep in mind that the presented trajectory

data is normalized before analysis so that all trajectories are the same length (101

time steps), so any di�erence in RTs between trials is erased. Hence, the comparison

between trajectories reflects the dynamic development of hand position in trials and

not the raw time course of the hand movements. While I believe the normalization

procedure rules out this alternative explanation, this is something that should be

explicitly tested in future studies.

The computational model of Gevers et al. (2006) views the parity decision as a

dynamic accumulation of activations for the response options EVEN and ODD. In the

inconsistent condition (e.g., 2 is presented but EVEN is on the right side of the screen),

the model would predict a competition that stems from the transitive juxtaposition

of two immediate visuo-spatial representations; a magnitude representation (e.g, 2 =

small), and a spatial representation (e.g., small = left). The natural result of these

two representations is an equating of the number 2 with the left side of the screen (i.e.,

the SNARC e�ect). The claim of Santens et al. (2011) and the present study is that

this competition manifests itself as a trajectory signature that appears as attraction

toward the incorrect alternative. It is important to note that it is not necessarily the

case that the hand is attracted toward the response ODD, but rather that the hand

is attracted toward the left side of the screen because of the spatial-numerical pairing

of 2/small with “left-side.”

More generally, these data suggest that a continuous cognition framework

(Spivey, 2007) may be beneficial for attempting to understand a variety of psycholog-

ical puzzles. Indeed, this approach has already proved fruitful in a variety of fields,

ranging among language comprehension (Spivey et al., 2005), stereotype formation

(Freeman & Ambady, 2009; Freeman, Pauker, Apfelbaum, & Ambady, 2010), and

semantic categorization (Dale, Kehoe, & Spivey, 2007).
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Taken as a whole, the results of the present study support the burgeoning body

of evidence that indicates that numerical decisions may not take place independently

from our bodily a�ordances. By studying hand movements in even the most simple

numerical task (a parity judgement task), we have revealed that numerical decisions

happen within a continuous, dynamic system of partially activated cognitive states

that would not be possible with the modular, computer-based metaphor of mind.
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