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Tracking continuous hand movements during number tasks has become a powerful method for
disentangling competing models of numerical representation. In two experiments, participants
used a computer mouse to choose whether presented numbers were greater than or less than 5.
In Experiment 1, trajectories became more curved toward the incorrect response label as target
numbers approached the comparison standard 5, indicating increasing response competition.
However, trajectories showed a rightward bias modulated by numerical distance and target
size, which supports a direct mapping account between hand movement and an ordered, spatial
representation of number. In Experiment 2, I changed the direction of computer mouse move-
ments from the standard bottom-to-top orientation to a left-to-right movement. Trajectories
again became more curved toward the incorrect response label as targets approached 5, but this
time, there was no modulation of trajectory bias by target size or distance. The results call into
question a purely spatial direct mapping account and instead lend support to a competition-
based model of response dynamics in number comparison.
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Behind the appearance of formalism, the roots of math-
ematical thinking are intimately tied to the interaction be-
tween body and space (Lakoff & Núñez, 2000). Advanced
mathematical ideas, such as limits and continuity, are often
conceptualized in terms of imagined motion along a curve.
In practice, expert mathematicians will often communicate
new ideas via an intuitive argument, temporarily foregoing
a formal, abstract proof in favor of what is often called a
“hand-waving” argument. Even in the act of composing a
formal proof in advanced mathematics, expert mathemati-
cians will use gestures to communicate their ideas (Marghetis
& Núñez, 2013).

Whereas gesture and hand movements seem to be an es-
sential part of advanced mathematical thinking, they are also
intimately tied to our most basic notions of number. Indeed,
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much research in numerical cognition has centered around
explaining the classical SNARC effect (Spatial-Numerical
Association of Response Codes; Dehaene, Bossini, & Gi-
raux, 1993), which is the finding that participants are faster to
respond leftward to smaller numbers and rightward to larger
numbers. Though the SNARC effect has been replicated in
a wide variety of contexts and experimental settings (Hub-
bard, Piazza, Pinel, & Dehaene, 2005), there are still open
questions about its origin.

One of the more widely-accepted models of the SNARC
effect is based on the idea of a mental number line (Res-
tle, 1970; Dehaene et al., 1993) and is known as the “di-
rect mapping account” (Santens & Gevers, 2008; Ishihara
et al., 2006; Schiller, Eloka, & Franz, 2016). In the direct
mapping account, mental representations of symbolic num-
bers are hypothesized to be arranged on a spatially-oriented
mental number line, where magnitude increases in the same
direction as reading direction (Shaki, Fischer, & Petrusic,
2009). These numbers are then mapped to external space
in a one-to-one fashion (Ishihara et al., 2006) so that rel-
ative position on the number line is preserved in external
space. Hence, when participants are asked to use a leftward
response to answer a question about a large number (or vice
versa), there is a mismatch between the response location
(left) and the external projection of the represented number
(right). This mismatch explains the relative slowdown that
participants exhibit when using leftward responses for large
numbers and rightward responses for small numbers.

On the other hand, Gevers, Verguts, Reynvoet, Caessens,
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and Fias (2006) proposed a fundamentally different model
that is based on response competition. In their model, Gev-
ers et al. (2006) present a three-layer neural network, where
the input layer consists of a numerical representation and the
output layer consists of nodes representing response alterna-
tives (e.g., leftward or rightward). In addition, there is a hid-
den layer that is responsible for a task-dependent categorical
representation of numbers (e.g., even/odd for a parity task,
small/large for a magnitude task). Response times are then
modeled by the number of network cycles required for the
correct response node to “win” by reaching a certain activa-
tion threshold. Critically, the SNARC effect is modeled as a
competition effect, where activations in competing response
nodes rise and fall over time.

Though much research has attempted to understand these
associations between numerical and spatial thinking, fewer
studies have focused on the dynamics of the actual hand
movements that occur during numerical thought. It is per-
haps surprising that these small hand movements can pro-
vide a direct behavioral signature of the types of mental
representations that are formed while thinking about num-
bers. Tracking these hand movements has become a popular
method for testing various accounts of phenomena in numer-
ical cognition (Fischer & Hartmann, 2014; Faulkenberry &
Rey, 2014). As such movements reflect a projection of inter-
nal cognitive processes onto an observable behavioral output
(Spivey, Grosjean, & Knoblich, 2005; Spivey, 2007), hand
tracking provides a window into the internal processes that
evolve during a numerical decision.

A number of recent numerical cognition studies have
exploited this technique in various forms, such as track-
ing the hand (Song & Nakayama, 2008), tracking the fin-
ger (Santens, Goossens, & Verguts, 2011; Dotan & De-
haene, 2013), and tracking the computer mouse (Marghetis,
Núñez, & Bergen, 2014; Faulkenberry, 2014; Ganor-Stern
& Goldman, 2014; Faulkenberry, Montgomery, & Tennes,
2015; Haslbeck, Wood, & Witte, 2015; Faulkenberry, Cruise,
Lavro, & Shaki, 2016). Among the first of this line of studies
was Song and Nakayama (2008), who tracked participants’
hand movements as they quickly judged whether a single
digit number was less than or greater than 5 by pointing to the
left or right side of a computer screen. Song and Nakayama
found that movement trajectories became more curved to-
ward the center of the screen as the presented number ap-
proached 5. Song and Nakayama (2008) explained this pat-
tern in terms of the direct mapping account, positing a direct
correspondence between the position of a manual response
and the position of a number on a mental number line.

Santens et al. (2011) critiqued this result on methodolog-
ical grounds and offered an alternative to the direct mapping
account. Santens et al. (2011) argued that since Song and
Nakayama (2008) used only one response rule throughout
their experiment (less than 5, move left; greater than 5, move

right), their results could also be explained by a competition-
based model of small number representation (Verguts, Fias,
& Stevens, 2005; Gevers et al., 2006), thus requiring no
assumption of a spatial correspondence between responses
and a mental number line. To test between these two ac-
counts, Santens et al. (2011) used two response rules. One
response rule used a number line congruent response map-
ping indentical to that of Song and Nakayama (2008), where
participants moved their finger leftward for a “less than”
decision and rightward for a “greater than” decision. The
other response rule used a number line incongruent response
mapping, where the “less than” decision required rightward
movement and the “greater than” decision required leftward
movement.

To see how the two models differ in their predictions, con-
sider Figure 1, which provides a schematic representation of
the idealized predicted trajectories for targets smaller than
5. Regardless of response mapping, the direct mapping ac-
count predicts that trajectories for the stimulus 4 will lie to
the right of trajectories for the stimulus 1. This is because
the direct mapping account hypothesizes a direct, one-to-one
correspondence between the number’s position on a mental
number line and the response location in physical space. A
similar picture can be seen in Figure 2, where the direct map-
ping account predicts that trajectories for the stimulus 6 will
lie to the left of trajectories for the stimulus 9. Note that the
straight lines depicted in the predictions of the direct map-
ping account simply represent a relatively direct path toward
the response location with less curvature, not necessarily an
absolutely straight trajectory with zero curvature.

Whereas the direct mapping account (Song & Nakayama,
2008) and the competition account (Verguts et al., 2005;
Gevers et al., 2006; Santens et al., 2011) make identical
predictions for trajectories in the number line congruent re-
sponse mapping, their predictions are in opposition for the
incongruent reponse mapping. As indicated by the dashed
lines in Figures 1 and 2, the direct mapping account predicts
that as numerical distance increases, trajectories in the in-
congruent response mapping become more curved. On the
other hand, the competition account predicts that these trac-
tories will become less curved (due to reduced competition as
distance increases). Santens et al. (2011) found exactly this
result; curvatures (as indexed via horizontal deviation from
the vertical midline) decreased as a function of the target’s
increasing distance from 5. As such, Santens et al. (2011) in-
terpreted their results as support for the competition account.

One limitation to the conclusions of Santens et al. (2011)
is that they did not consider that average trajectories can po-
tentially hide two very different types of hand movements
(Freeman & Dale, 2012). It is possible that a curved trajec-
tory of the type seen in Figures 1 and 2 can result from av-
eraging across two types of trajectories; one trajectory with
little curvature that moves directly to the correct answer,
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Figure 1. Idealized predicted trajectories toward small tar-
gets (less than 5) from the direct mapping account (Song
& Nakayama, 2008) and the competition account (Verguts,
Fias, & Stevens, 2005), displayed as a function of numeri-
cal distance (small versus large) and response mapping (con-
gruent versus incongruent). Figure is adapted from Santens,
Goossens, and Verguts (2011).

Figure 2. Idealized predicted trajectories toward large tar-
gets (greater than 5) from the direct mapping account (Song
& Nakayama, 2008) and the competition account (Verguts,
Fias, & Stevens, 2005), displayed as a function of numeri-
cal distance (small versus large) and response mapping (con-
gruent versus incongruent). Figure is adapted from Santens,
Goossens, and Verguts (2011).

and another path that begins in the wrong direction but is
quickly corrected in midflight. Concretely, behavior of this
type could produce the curved trajectory represented by the
dashed line in the bottom left of each of Figures 1 and 2, thus
appearing to support the competition account. However, the
underlying cognitive processes would be more in line with a
direct mapping account. Hence, the conclusions of Santens
et al. (2011) could be a bit premature.

Note, however,that one should be able to detect such be-
haviors simply by analyzing the distribution of mouse tra-
jectories. These disparate cognitive processes would be re-
flected by a bimodal distribution of response trajectories
(Freeman & Dale, 2012). Thus, to conclude that a curved
trajectory indeed is representative of competition between
parallel and partially active response options, one must take
care to rule out this alternative by assessing whether the dis-
tribution of trajectory curvatures is indeed bimodal.

In the present study, I used computer mouse tracking
to test between the direct mapping and competition ac-
counts of the dynamics of number comparison (e.g., Song
& Nakayama, 2008; Santens et al., 2011). Specifically, I
also analyzed the distributions of trajectories in order to rule
out an alternative explanation of the results of Santens et al.
(2011). In addition, I aimed to perform a novel test to fur-
ther tease apart the direct mapping and competition accounts
by computing the amount of trajectory asymmetry between
congruent and incongruent trials. As one can see in Figure
1, the direct mapping account predicts that trajectories for
small targets would be biased toward the right for small dis-
tance trials and toward the left for large distance trials. On
the other hand, Figure 2 shows the opposite pattern; namely
that trajectories for large targets would be biased toward the
left for small distance trials and to the right for large distance
trials. The competition account makes a different prediction.
Since the competition account models trajectory curvature as
depending only on the numerical distance between the target
and the comparison, and not on the specific response map-
ping, the competition account would predict no trajectory
bias as a function of either distance or target size.

Experiment 1

The purpose of Experiment 1 was to replicate the study
of Santens et al. (2011) using computer mouse tracking and
test against an alternative explanation. In addition, I aimed
to test for asymmetry between trajectories for congruent and
incongruent trials, which is a novel and previously untested
signature for the direct mapping account (Song & Nakayama,
2008).

Method

Participants. Sixty-four undergraduate students (52 fe-
male, mean age = 24.1 years, age range 18 to 57) participated
in this experiment in exchange for partial course credit in
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their psychology courses. Eight participants reported being
left hand-dominant, but all reported that they used their right
hand for the computer mouse. The experiment was reviewed
and approved by the institutional review board at Tarleton
State University.

Apparatus. The experiment was implemented using
the MouseTracker software package (Freeman & Ambady,
2010). The experimental trials were presented on a 20 inch
iMac desktop computer with a screen resolution of 1,280 x
1,024 pixels and a refresh rate of 60 Hz. Input was cap-
tured via a Dell optical mouse connected via USB. Partici-
pants were seated approximately 60 cm from the computer
and allowed to hold the computer mouse in a position which
was comfortable. All participants held the mouse in the
right hand, positioned slightly to the right of center on the
computer table. We ran the MouseTracker program on the
iMac using a virtual Windows XP environment via Parallels.
Following the recommendations of Fischer and Hartmann
(2014), we disabled the “dynamic acceleration” option and
lowered the speed of the mouse movements on the screen to
the second-lowest possible speed in the mouse settings dia-
log. This is done to prevent quick and erratic mouse move-
ments, resulting in a smooth and more reliable record of par-
ticipants’ hand movements. The resulting displacement ratio
of the mouse to screen movement was 1 cm to 100 pixels.

Stimuli and procedure. Participants were asked to per-
form a number comparison task using the digits 1 through 9,
excluding 5, which we used as the comparison standard on
each trial. Participants were told that on every trial a number
would appear in the center of the screen, and they would be
asked to choose, as quickly as possible, whether the number
was less than 5 or greater than 5. Each trial started with a
blank screen presented for 1000 ms, followed by a screen
that displayed the response labels SMALLER and LARGER
at the top left and right of the screen, respectively. Each re-
sponse label was presented in Arial font with point size 24.

The order of the response labels was switched once mid-
way through the experiment; half of the participants started
with the SMALLER-LARGER ordering, while the other half
began with the LARGER-SMALLER ordering. After 1000
ms, a START button appeared. Once the START button was
pressed, one of the stimulus numerals appeared in the cen-
ter of the screen, presented in Arial font with point size 48.
Participants then clicked on the correct of these two options;
while doing so, the software recorded the streaming (x, y)
coordinates of the computer mouse approximately 63 times
per second.

We manipulated the spatial congruity of the response la-
bels SMALLER and LARGER: in the congruent condition,
SMALLER appeared in the upper left corner and LARGER
appeared in the upper right corner. In the incongruent con-
dition, these labels were reversed. In half of the trials, the
correct answer was on the left side, whereas on the other half

of the trials, the correct answer was on the right side.
For incorrect responses, the program displayed an “X” for

1000 ms. To ensure that trajectories reflected online process-
ing, participants were encouraged to begin their movements
as early as possible and were warned if initiated movement
later than 250 ms following number pair presentation. This
instruction is customarily included in mousetracking studies
so that trajectories reflect the dynamics of a decision process
rather than simply reflecting the kinematics of a response
choice after the choice has already been made (Freeman &
Ambady, 2009; Spivey et al., 2005).

For each of the two counterbalanced spatial congruity con-
ditions, participants completed two blocks of 160 trials (20
repetitions of each stimulus number, randomly presented),
with a short break in between each block. In all, each partici-
pant completed 640 experimental trials in a single 45 minute
session.

Results

Participants completed a total of 40,960 trials. Of these,
84 trials contained a response error (0.20%). From these tri-
als, we excluded an additional 659 trials for which overall re-
action time exceeded 3 standard deviations from the mean re-
action time across all correct trials (1.6%). All further analy-
ses were conducted on the remaining 40,217 trials. All statis-
tical analyses were performed using the R statistical package
(R Development Core Team, 2011). All figures shown were
created in R using the ggplot2 package (Wickham, 2009).

Time analyses. For each trial, the MouseTracker soft-
ware recorded two time-based performance measures: reac-
tion time (RT), the total time elapsed between clicking the
START button and the target mouse click; and initiation time
(Init), the time elapsed between target onset after clicking
the START button and the onset of mouse movement. From
these two measures, I calculated movement time (MT), the
actual duration of mouse movement, via the relationship MT
= RT - Init.

Movement times were submitted to a 2 (Response map-
ping condition: congruent vs. incongruent) x 2 (Response
side: leftward vs. rightward) x 4 (Distance: 1, 2, 3, 4) re-
peated measures analysis of variance (see Table 1). There
was a significant main effect of distance, F(3, 189) = 94.58,
p < 0.001, η2

p = 0.60. As can be seen in Figure 3, move-
ment times decreased with increasing numerical distance. To
confirm this, I tested whether movement time varied as a
linear function of numerical distance by performing a lin-
ear contrast, which was significant, t = −4.42, p < 0.001.
There was also a significant main effect of response side,
F(1, 63) = 6.32, p = 0.01, η2

p = 0.09. Leftward re-
sponses were 14 ms faster than rightward responses. Finally,
there was a significant interaction between response mapping
condition and response side, F(1, 63) = 5.10, p = 0.03,
η2

p = 0.07. As Figure 3 shows, leftward responses with an in-
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congruent response mapping (LARGER - SMALLER) were
significantly slower than leftward responses with a congruent
response mapping (SMALLER - LARGER). However, this
effect disappeared for rightward responses. No other effects
in the ANOVA model were significant (all F - ratios less than
0.98).

Figure 3. Mean movement times in Experiment 1 as a func-
tion of numerical distance (1, 2, 3, 4), spatial congruity
condition (congruent versus incongruent), and response side
(leftward versus rightward). Error bars represent within-
subject 95% confidence intervals as recommended by Morey
(2008).

Similarly, initiation times were submitted to a 2 (Response
mapping condition: congruent vs. incongruent) x 2 (Re-
sponse side: leftward vs. rightward) x 4 (Distance: 1, 2,
3, 4) repeated measures analysis of variance (see Table 1).
Initiation times did not differ between conditions on any fac-
tor (all F ratios less than 3.1). Such results indicate that the
effects of numerical distance and response mapping on nu-
merical representations may continue to bias action well into
the response phase (e.g., Buc Calderon, Verguts, & Gevers,
2015; Faulkenberry et al., 2016).

Trajectory analyses. As in other recent mouse track-
ing studies, hand trajectories were measured by recording
the streaming x, y - coordinates of the computer mouse dur-
ing each trial. Raw mouse trajectories were pre-processed in
MouseTracker (Freeman & Ambady, 2010) so that all hand
trajectory data was rescaled onto a standard coordinate space
of [-1,1] x [0,1.5]. All trajectories were normalized via linear
interpolation to consist of exactly 101 timesteps. This step
is customarily done to allow direct comparison of trajecto-
ries in different conditions without the confounding effect of
differing movement times. Although there is some debate
about whether averaging over length-normalized trajectories
leads to systematic bias in the mean trajectories (Poli & Sal-
varis, 2011), such preprocessing was necessary to test the
predictions of this experiment. Specifically, the normaliza-

tion procedure allowed for direct comparison of trajectory
curvatures, indexed via area under the curve (AUC). Since
MouseTracker computes AUC for each trial by summing the
areas of 100 trapezoids that comprise the area between the
trajectory path and the ideal straight line between the start
box and the response box, it is essential that the trajectories
each be comprised of the same number of timesteps.

Average mouse trajectories as a function of response map-
ping and response side are depicted in Figure 4. To test how
curvatures changed as a function of numerical distance, I
used area under the curve (AUC) as an index of the trajectory
curvature on each trajectory. Mean AUC values can be seen
in Table 1. AUC values were submitted to a 2 (Response
mapping condition: congruent vs. incongruent) x 2 (Re-
sponse side: leftward vs. rightward) x 4 (Distance: 1, 2, 3,
4) repeated measures analysis of variance. There was a sign-
ficant main effect of numerical distance, F(3, 189) = 105.2,
p < 0.001, η2

p = 0.63. As can be seen in Figure 5, AUC
decreased as numerical distance increases (linear contrast;
t = −6.12, p < 0.001). There was also a significant main
effect of response mapping condition, F(1, 63) = 16.46,
p < 0.001, η2

p = 0.21. Trajectories from the incongruent
response mapping had more curvature than those from the
congruent response mapping.

There was a small but statistically significant interac-
tion between response mapping condition and response side,
F(1, 63) = 4.12, p < 0.05, η2

p = 0.06, where the effect
of response mapping condition was greater for leftward tra-
jectories than for rightward trajectories. Finally, there was
a significant interaction between numerical distance and re-
sponse mapping condition, F(3, 189) = 12.15, p < 0.001,
η2

p = 0.16. Whereas the incongruent response mapping gen-
erally resulted in greater curvatures across all distances, this
pattern did not hold for rightward trajectories (see Figure 5).
This claim is qualified via the significant three-way interac-
tion between distance, response mapping condition, and re-
sponse side, F(3, 189) = 4.74, p = 0.003, η2

p = 0.07.
The critical test to tease apart whether trajectory data lend

better support to the direct mapping account or the competi-
tion account comes from the pattern of curvatures from in-
congruent trials. Specifically, the direct mapping account
predicts that curvature on incongruent trials increases with
numerical distance, whereas the competition account pre-
dicts the opposite (Santens et al., 2011). The present data
indeed shows a linear decrease in curvatures with increasing
numerical distance (see Figure 5). However, the presence of
an interaction between distance and response mapping con-
dition indicates that this general decreasing pattern may be
different between congruent and incongruent trials. So, to
test between these two competing models, I tested incongru-
ent trials in a separate analysis.

To this end, AUC values on incongruent trials were sub-
mitted to a 2 (Response side: leftward vs. rightward) x 4
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Table 1
Mean (SD) of performance measures for trajectories in Experiment 1

Congruent Trials Incongruent Trials

Distance 1 2 3 4 1 2 3 4

Leftward trajectories
MT (msec) 897 (42) 873 (43) 853 (42) 855 (40) 909 (44) 874 (44) 868 (42) 865 (38)
Init (msec) 84 (15) 83 (15) 83 (12) 83 (16) 87 (13) 88 (16) 89 (14) 89 (15)
AUC 0.95 (.35) 0.83 (.35) 0.64 (.29) 0.69 (.34) 1.14 (.46) 0.92 (.46) 0.89 (.42) 0.85 (.41)
Rightward trajectories
MT (msec) 912 (48) 894 (49) 876 (39) 877 (41) 915 (43) 890 (43) 872 (47) 871 (46)
Init (msec) 84 (11) 84 (15) 83 (13) 84 (17) 90 (13) 87 (14) 86 (15) 88 (14)
AUC 0.81 (.39) 0.83 (.32) 0.64 (.33) 0.61 (.33) 0.98 (.39) 0.75 (.38) 0.67 (.37) 0.68 (.44)

Note. MT = movement time, Init = initiation time, AUC = area under curve.

(Distance: 1, 2, 3, 4) repeated measures analysis of variance.
As in the original analysis, there was a significant main ef-
fect of numerical distance, F(3, 189) = 36.71, p < 0.001,
η2

p = 0.37, which indicated that curvature decreased as a
function of numerical distance (linear contrast; t = −3.83,
p < 0.001). Critically, there was no interaction between nu-
merical distance and response side (F < 0.35), indicating
that curvature decreased with increasing numerical distance
regardless of response side. This result is only predicted by
the competition model (Santens et al., 2011), which states
that as numerical distance increases, response competition
decreases, leading to straighter, less curved trajectories.

Figure 4. Average computer mouse trajectories in Experi-
ment 1 as a function of spatial congruity condition (congru-
ent versus incongruent) and response side (leftward versus
rightward). Shading represents one standard error, computed
from the mean x-coordinates of trajectories over the sample
of 64 participants.

Distribution of trajectories. The trajectory data above
lend tentative support to the competition model of numerical
representation (Verguts et al., 2005), and hence reflect the
view that during the numerical decision process, participants

Figure 5. Mean area under the curve (AUC) in Experiment
1 as a function of numerical distance (1, 2, 3, 4), spatial
congruity condition (congruent versus incongruent), and re-
sponse side (leftward versus rightward). Error bars represent
within-subject 95% confidence intervals as recommended by
Morey (2008).

formed partially-active representations of both response al-
ternatives until the winning representation was stabilized and
the correct answer was chosen. However, there is an al-
ternative explanation that could explain the data. It could
be the case that the smooth, continuous attraction we see in
Figure 4 is simply the result of averaging across fundamen-
tally different types of trials (Spivey et al., 2005; Freeman
& Dale, 2012). For example, if some trials showed no at-
traction toward the competitor (i.e., the participants’ hands
moved directly toward the correct answer) and other trials
were sharply deflected midflight as a corrective motion af-
ter an initial error, the appearance of the average trajecto-
ries would be smooth, even though the cognitive processes
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involved were modular (that is, motor responses were not
initiated until the decision was made). In this case the dis-
tribution of the AUC values would be bimodal; some of the
values would be small (indicating direct trajectories) and oth-
ers would be large (reflecting the midflight correction of an
initially incorrect response).

To test against this possibility, I analyzed the distribution
of AUC values for indications of bimodality (see Figure 6).
Specifically, I transformed AUC values to z-scores by partic-
ipant, then computed a bimodality coefficient (SAS Institute
Inc., 2012) for the distribution of AUC z-scores for incon-
gruent trials. This bimodality coefficient was 0.412, which is
less than the minimum value of 0.555 that would represent
a bimodal distribution. In addition, I tested bimodality by
computing Hartigan’s dip statistic D (J. A. Hartigan & P. M.
Hartigan, 1985). D is an inferential statistic; if p < 0.05,
the distribution is considered to be multimodal (Freeman &
Dale, 2012). Using the R package diptest (Maechler, 2013),
I computed D = 0.0009, p > 0.99, confirming that the dis-
tribution is not bimodal. Both results confirm that the distri-
bution of AUC values is not bimodal, and that the smooth,
continuous attraction away from the correct answer in the
incongruent trials is not the result of participants’ quickly
correcting their fast, incorrect initial responses.

Figure 6. Distribution of z-scores of AUC values in Experi-
ment 1 as a function of spatial congruity condition (congru-
ent versus incongruent).

Testing asymmetry between response mappings.
While the trajectory data above seem to indicate support
for the competition model over the direct mapping model,
the presence of interactions between numerical distance, re-
sponse mapping condition, and response side prevent a clean,
direct interpretation. Thus, I decided to supplement the AUC
analysis with a novel analysis based on symmetry of trajec-
tories. A direct inspection of Figures 1 and 2 reveals that one
main difference between the direct mapping and competition
accounts lies in the symmetry between congruent and incon-

gruent response mappings. Specifically, the direct mapping
account predicts that trajectories are asymmetric about the
vertical movement axis. For example, in Figure 1 we see
that for the stimulus 1, the trajectory toward the upper left
response box (a congruent response mapping) has very little
curvature, but the trajectory toward the upper right response
box (an incongruent response mapping) has a fair bit of cur-
vature. Hence, taken as a pair of trajectories, this pair is quite
asymmetric. On the other hand, the competition account pre-
dicts that the same trajectory pairs would be symmetric about
the vertical movement axis.

To test for asymmetry between congruent and incongru-
ent response mappings, I first computed an asymmetry coef-
ficient A for each participant. Intuitively, A represents the
average amount of asymmetry across the average trajecto-
ries for both response mappings (congruent and incongru-
ent) over the 101 normalized timesteps. Specifically, it is
computed as:

A =
1

101

[ 101∑
i=1

xC(i) + xI(i)
]

where xC(i) is the mean x-coordinate at timestep i across all
congruent response trials, and xI(i) is the mean x-coordinate
at timestep i across all incongruent response trials. Notice
that by definition, A > 0 implies an asymmetry character-
ized by rightward bias and A < 0 implies a leftward bias,
whereasA = 0 implies symmetric response trajectories.

Using this formulation, one can derive predictions from
the direct mapping and competition accounts. Specifically,
for small targets, the direct mapping account predicts that
as numerical distance increases, A decreases from positive
to negative. For large targets, the direct mapping account
predicts that as distance increases, A increases from nega-
tive to positive. In other words, a key signature of the direct
mapping account would be an interaction between target size
(smaller versus larger) and numerical distance (small versus
large).

To test this, I submitted asymmetry scoresA to a 2 (target
size: smaller than 5, larger than 5) x 2 (numerical distance:
small, large) repeated measures analysis of variance. As can
be seen in Figure 7, there was a significant main effect of
target decision, F(1, 63) = 14.38, p < 0.001, η2

p = 0.19.
Trajectories toward the “larger than 5” decision exhibited
more rightward bias than trajectories toward the “smaller
than 5” decision. There was no main effect of distance on
asymmetry (F < 0.43). There was a small, but statistically
significant interaction between target decision and distance,
F(1, 63) = 4.15, p < 0.05, η2

p = 0.06. For large targets, the
asymmetry increased with numerical distance, whereas the
asymmetry decreased for small targets.



8 THOMAS J. FAULKENBERRY

Figure 7. Mean asymmetry score in Experiment 1 as a func-
tion of target decision (smaller versus larger) and numerical
distance (small versus large). Error bars represent within-
subject 95% confidence intervals as recommended by Morey
(2008).

Discussion

The results of Experiment 1 were mixed. On one hand,
the curvature data (as indexed via trial-by-trial AUC mea-
sures) indicated support for the competition account (Santens
et al., 2011). Curvatures decreased as a function of numeri-
cal distance for incongruent trials, which cannot be directly
explained by the direct mapping account. On the other hand,
computing trajectory asymmetry between congruent and in-
congruent trials led to a different picture. Specifically, the
asymmetry scores revealed a target decision by distance in-
teraction, where asymmetry increased with distance for large
targets but decreased with distance for small targets. This
result cannot be explained by a competition account, which
predicts no asymmetry between congruent and incongruent
trials. As such, what seems like clear evidence for the com-
petition account is obscured by a pervasive direct mapping
signature in the asymmetry scores.

However, it is possible that this direct mapping signature
stems from biomechanical constraints placed upon partici-
pants from apparatus and experimental design. Note that
all participants held the computer mouse in the right hand.
When this biomechanical limitation is paired with a left-right
orientation of target responses, rightward bias may be the
natural result. If this is the case, then one cannot directly
interpret these results (particularly the asymmetry analysis)
as support for either model.

To overcome this limitation, I performed a second exper-
iment where participants performed an identical magnitude
comparison task, but instead of the usual movement trajec-

tory of starting in the bottom center of the screen and moving
either to the upper left or right, participants began each trial
in the vertical center of the left side of the screen and moved
rightward to either the upper right or the lower right.

Experiment 2

The purpose of Experiment 2 was to investigate whether
the direct mapping signature revealed in asymmetry scores
in Experiment 1 was a result of biomechanical constraints
that result from the experimental setup. Specifically, all par-
ticipants used their right hand to hold the computer mouse,
so rightward motion may have been facilitated and leftward
motion inhibited. Such movement constraints could have re-
sulted in the rightward bias seen in Experiment 1 trajecto-
ries. On the other hand, the rightward bias might have been
the result of some direct mapping between numerical repre-
sentations and manual responses. To test between these two
explanations, I designed the same task as in Experiment 1,
but changed initial movement direction from vertical (start-
ing at bottom of screen and moving upward toward top left
or right) to horizontal (starting at left and moving rightward
toward top right or bottom right).

Method

Participants. Thirty-two undergraduate students (26 fe-
male, mean age = 20.9 years, age range 18 to 32) partici-
pated in this experiment in exchange for partial course credit
in their psychology courses. Three participants reported be-
ing left hand-dominant, but as in Experiment 1, all reported
that they used their right hand for the computer mouse. The
experiment was reviewed and approved by the institutional
review board at Tarleton State University.

Apparatus. The apparatus was identical to that used in
Experiment 1.

Stimuli and procedure. Except for orientation of the
screen and the movement parameters of the computer mouse,
the stimuli and procedure were identical to Experiment 1.
Each trial started with a blank screen presented for 1000
ms, followed by a screen that displayed the response labels
SMALLER and LARGER at the upper right and lower right
of the screen. After 1000 ms, a START button appeared,
vertically centered on the far left side of the screen. Once
the START button was pressed, one of the stimulus numerals
appeared in the center of the screen, presented in Arial font
with point size 48. The deadline for response initiation was
increased to 400 ms, as an earlier pilot experiment indicated
that participants had difficulty initiating left-to-right move-
ment within the 250 ms threshold used in Experiment 1.

As in Experiment 1, we manipulated the spatial congruity
of the response labels SMALLER and LARGER: in the con-
gruent condition, SMALLER appeared in the lower right cor-
ner and LARGER appeared in the upper right corner. This
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choice of orientation was based on previous work identify-
ing a vertically oriented mapping of small numbers to lower
space and large numbers to upper space (e.g., Ito & Hatta,
2004; Schwarz & Keus, 2004). In the incongruent condition,
these labels were reversed. In half of the trials, the correct
answer was on the upper right, whereas on the other half of
the trials, the correct answer was on the lower right.

For each of the two counterbalanced spatial congruity con-
ditions, participants completed 160 trials (20 repetitions of
each stimulus number, randomly presented). In all, each
participant completed 320 experimental trials in a single 30
minute session.

Results

Participants completed a total of 10,240 trials. Of these,
40 trials contained a response error (0.39%). From these tri-
als, I excluded an additional 189 trials for which overall reac-
tion time exceeded 3 standard deviations from the mean reac-
tion time across all correct trials (1.9%). All further analyses
were conducted on the remaining 10,011 trials.

Time analyses. As in Experiment 1, the MouseTracker
software recorded reaction time (RT) and initiation time
(Init). From these two measures, I calculated movement time
(MT) via the relationship MT = RT - Init.

Movement times were submitted to a 2 (Response map-
ping condition: congruent vs. incongruent) x 2 (Response di-
rection: upward versus downward) x 4 (Distance: 1, 2, 3, 4)
repeated measures analysis of variance (see Table 2). There
was a significant main effect of distance, F(3, 93) = 28.14,
p < 0.001, η2

p = 0.48. As can be seen in Figure 8, movement
times decreased as numerical distance increases, as con-
firmed via a significant linear contrast, t = −3.22, p = 0.001.
No other effects were significant (all F values less than 3.2).

Initiation times were submitted to a 2 (Response mapping
condition: congruent vs. incongruent) x 2 (Response direc-
tion: upward versus downward) x 4 (Distance: 1, 2, 3, 4)
repeated measures analysis of variance (see Table 2). As in
Experiment 1, initiation times did not differ as a function of
any factor (all F values less than 1.6).

Trajectory analyses. Average mouse trajectories as a
function of response mapping condition and response side
are depicted in Figure 9. AUC values were submitted to a
2 (Response mapping condition: congruent vs. incongruent)
x 2 (Response direction: upward vs. downward) x 4 (Dis-
tance: 1, 2, 3, 4) repeated measures analysis of variance (see
Table 2). There was a signficant main effect of numerical
distance, F(3, 93) = 26.5, p < 0.001, η2

p = 0.46. As can
be seen in Figure 10, AUC decreased as numerical distance
increases (linear contrast; t = −3.43, p < 0.001). There
was also a small, but statistically significant main effect of
response mapping condition, F(1, 31) = 4.27, p < 0.05,
η2

p = 0.12. Trajectories from the incongruent response map-
ping had slightly more curvature than those from the congru-

Figure 8. Mean movement times in Experiment 2 as a func-
tion of numerical distance (1, 2, 3, 4), spatial congruity
condition (congruent versus incongruent), and response side
(leftward versus rightward). Error bars represent within-
subject 95% confidence intervals as recommended by Morey
(2008).

ent response mapping. Finally, there was a significant main
effect of response direction, F(1, 31) = 32.09, p < 0.001,
η2

p = 0.51; upward trajectories were signficantly more curved
than downward trajectories. None of the remaining interac-
tions were statistically significant (all F values less than 2.1).
Critically, there was no interaction between condition and
distance, which implies that trajectories for both congruent
and incongruent trials became less curved as numerical dis-
tance increases. Particularly, the decrease in curvatures on
incongruent trials is only predicted by the competition model
(Santens et al., 2011).

Distributional analyses of trajectories. As in Experi-
ment 1, I tested against the possibility that the smooth, av-
erage trajectories we see in Figure 9 were not the result of
competitive processes but rather a statistical artifact of col-
lapsing across fundamentally different cognitive process sig-
natures. The distribution of z-scores of AUC values can be
seen in Figure 11. I computed the bimodality coefficient
for the distribution of AUC z-scores for incongruent trials
to be 0.229, which is less than the minimum value of 0.555
that would represent a bimodal distribution. In addition, I
tested bimodality by computing Hartigan’s dip statistic as
D = 0.0030, p > 0.99, confirming that the distribution is
not bimodal. Both results mirror those in Experiment 1, and
confirm that the distribution of AUC values is not bimodal.

Testing asymmetry between response mappings. As
in Experiment 1, I tested for asymmetry between congruent
and incongruent trajectories. Given the side-to-side orienta-
tion of mouse trajectories in Experiment 2, the computation
of the asymmetry score was slightly different. Specifically,
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Table 2
Mean (SD) of performance measures for trajectories in Experiment 2

Congruent Trials Incongruent Trials

Distance 1 2 3 4 1 2 3 4

Upward trajectories
MT (msec) 960 (78) 933 (61) 929 (60) 914 (59) 990 (75) 932 (62) 923 (70) 917 (62)
Init (msec) 140 (42) 134 (31) 135 (23) 141 (30) 133 (34) 130 (27) 128 (30) 136 (27)
AUC 0.42 (.10) 0.39 (.12) 0.35 (.10) 0.35 (.11) 0.43 (.09) 0.41 (.09) 0.35 (.09) 0.37 (.09)
Downward trajectories
MT (msec) 977 (71) 953 (62) 924 (60) 937 (58) 959 (56) 923 (69) 904 (59) 928 (66)
Init (msec) 138 (28) 130 (24) 140 (28) 138 (34) 136 (31) 135 (28) 128 (27) 132 (29)
AUC 0.27 (.10) 0.23 (.10) 0.23 (.08) 0.22 (.09) 0.30 (.09) 0.28 (.10) 0.25 (.09) 0.26 (.10)

Note. MT = movement time, Init = initiation time, AUC = area under curve.

Figure 9. Average computer mouse trajectories in Experi-
ment 2 as a function of spatial congruity condition (congru-
ent versus incongruent) and response side (leftward versus
rightward). Shading represents one standard error, computed
from the mean x-coordinates of trajectories over the sample
of 32 participants.

symmetric trajectories would be mirrored about the horizon-
tal line defined by the equation y = 0.75 (since the y coordi-
nates range from 0 to 1.5). To account for this, I computed
the asymmetry coefficientA using the following equation:

A =
1

101

[ 101∑
i=1

yC(i) + yI(i)
2

]
− 0.75

where yC(i) is the mean y-coordinate at timestep i across all
congruent response trials, and yI(i) is the mean y-coordinate
at timestep i across all incongruent response trials. Notice
this time that A > 0 implies an asymmetry characterized by
upward bias and A < 0 implies a downward bias, whereas
A = 0 implies symmetric response trajectories.

As in Experiment 1, the competition account predicts
symmetric trajectories (A = 0) for all conditions, but the di-

Figure 10. Mean area under the curve (AUC) in Experiment
2 as a function of numerical distance (1, 2, 3, 4), spatial
congruity condition (congruent versus incongruent), and re-
sponse side (leftward versus rightward). Error bars represent
within-subject 95% confidence intervals as recommended by
Morey (2008).

rect mapping account predicts various asymmetries. Specif-
ically, for small targets, the direct mapping account predicts
that as numerical distance increases,A decreases from posi-
tive to negative. For large targets, the direct mapping account
predicts that as distance increases,A increases from negative
to positive. Again, the critical signature of the direct map-
ping account would be an interaction between target size and
numerical distance.

To test this, I submitted asymmetry scores A to a 2 (tar-
get size: smaller than 5, larger than 5) x 2 (numerical dis-
tance: small, large) repeated measures analysis of variance.
No terms in the ANOVA model were significant (all F val-
ues less than 0.66). As can be seen in Figure 12, there is a
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Figure 11. Distribution of z-scores of AUC values in Exper-
iment 2 as a function of spatial congruity condition (congru-
ent versus incongruent).

very slight negative asymmetry overall (reflecting a general
bias toward downward mouse movements), but the critical
interaction between target decision and numerical distance is
absent.

Figure 12. Mean asymmetry score in Experiment 2 as a func-
tion of target decision (smaller versus larger) and numerical
distance (small versus large). Error bars represent within-
subject 95% confidence intervals as recommended by Morey
(2008).

Discussion

In Experiment 2, I replicated the general patterns of re-
sults in Experiment 1 using left-to-right mouse movement
trajectories instead of the customary bottom-to-top trajecto-

ries commonly used in mouse tracking experiments. Specifi-
cally, I found that movement trajectories became less curved
as numerical distance increased, a result that is only pre-
dicted by the competition model (Santens et al., 2011). In
addition, I demonstrated that although trajectories exhibited
a slight bias toward the bottom of the screen, the patterns
of trajectory asymmetries predicted by the direct mapping
model (Song & Nakayama, 2008) were absent. In all, these
results lend solid support for the competition account of re-
sponse dynamics in a numerical comparison task.

General Discussion

The purpose of the present study was to use computer
mouse tracking to test between two competing accounts of
response dynamics in number comparison. The direct map-
ping account (Dehaene et al., 1993; Song & Nakayama,
2008) supposes that manual responses correspond directly
to a spatial representation of the target number on a mental
number line. Alternatively, the competition account (Gevers
et al., 2006; Verguts et al., 2005; Santens et al., 2011) posits
that curved trajectories result from competition among paral-
lel and partially active response options. Santens et al. (2011)
previously tested between these two accounts and found sup-
port for the competition model, but they did not test for the
possibility that the curved trajectories in the spatially incon-
gruent response condition (LARGER on left, SMALLER on
right) could have resulted from averaging across two dis-
tinctly different types of responses. In two experiments,
I demonstrated that such behaviors did not occur, and the
curved trajectories indeed are the result of competitive pro-
cessing. Furthermore, I performed a novel analysis based on
computing an index of asymmetry to show that trajectories
for congruent and incongruent trials are essentially mirror-
images of each other, which further supports the competition
account.

As Santens et al. (2011) explained, a critical test between
the direct mapping and competition accounts is discerning
the pattern of trajectory curvatures on incongruent trials as
numerical distance between the target and comparison stan-
dard increases. The direct mapping account predicts that tra-
jectories should become more curved as numerical distance
increases (see dashed lines in Figures 1 and 2). The compe-
tition account predicts the opposite. In Experiment 1, using
area under the curve (AUC) as an index of trajectory curva-
ture, I found that curvature decreased as numerical distance
increased, replicating Santens et al. (2011) and supporting
the competition account. Additionally, I analyzed the distri-
bution of trajectories (again, as indexed by AUC values) and
found that the distribution was not bimodal, which rules out
the alternative explanation previously mentioned.

Because the nature of the decreasing pattern of curvatures
in Experiment 1 was dependent upon response side (left ver-
sus right), I decided to supplement the previous analysis with
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a new analysis based on the symmetry of response trajecto-
ries across congruent and incongruent trials. As is evident
from Figures 1 and 2, one difference between the direct map-
ping and competition accounts is that while the competition
account predicts that congruent and incongruent trials should
be symmetric with respect to the movement direction, the di-
rect mapping account would predict directional biases that
depend on target size and numerical distance. Is it possible
that these biases are being somehow obscured in our present
data analyses? To answer this question, I computed an index
of asymmetry for each participant that would reflect, on av-
erage, whether trajectories are biased leftward or rightward.
Specifically, the direct mapping account would predict that
for this measure of asymmetry, there would be a significant
interaction between target decision (smaller than 5 versus
larger than 5) and numerical distance (small versus large).
Surprisingly, I found exactly this result; there was a small,
but statistically significant interaction between target deci-
sion and numerical distance. This pervasive direct mapping
signature prevents clean interpretation of the results of Ex-
periment 1.

In Experiment 2, I reasoned that the obtained asymme-
try could be the result of biomechanical constraints from the
experimental setup. Since every participant used their right
hand throughout the task, such a setup could introduce an
implicit biomechanical bias. To control for this, I changed
the direction of movement from bottom-to-top (the tradi-
tional computer mouse tracking direction) to left-to-right. To
my knowledge, this is the first experiment in the context of
numerical cognition which has used this response direction.
The results of Experiment 2 mirrored those of Experiment
1. Critically, there were no asymmetry signatures in Exper-
iment 2, so it is likely the case that the asymmetry found in
Experiment 1 was due to biomechanical factors and was not
indicative of a direct mapping between the hand and a men-
tal number line. In all, both experiments lend solid support
to the competition account of response dynamics in number
comparison (Verguts et al., 2005; Santens et al., 2011).

While the present study provides an initial answer to the
question of how trajectories evolve in a number comparison
task, there are still unsolved problems on the dynamics of
the interference effects that arise from numerical distance.
Classically, the numerical distance effect has been thought to
arise from representational overlap on a mental number line
(Dehaene, 1992; Gallistel & Gelman, 1992). Such a model
would indicate that the slow-down for small distance number
pairs originates at an early representational phase. However,
recent mouse tracking work with the size congruity effect
(Faulkenberry et al., 2016) has shown that interference ef-
fects persist into response execution and are not isolated to
early, pre-response representational stages (see also Santens
& Verguts, 2011; Buc Calderon et al., 2015). Though not
critical to the present study, I did show that distance effects

are found in mouse movement times, but not initation times,
so it appears that the RT effects of numerical distance may
be carried into the response stage as well. Note that our
instructions forced participants to begin mouse movements
very early, and the resulting small initiation times are not
likely to reflect cognitive processing (Luce, 1986). Also note
that one may model the distance effect using the model of
Verguts et al. (2005) with a logarithmic representation of the
mental number line and still see such distance effects in re-
sponse execution 1. What is unclear is whether the origin of
the conflict is in these early representation stages or the late,
response execution stages. Thus, computer mouse tracking
could be a promising technique to study the timecourse of
the numerical distance effect, adding to the debate on early
versus late interactions in representations of numerical mag-
nitude (e.g., Arend & Henik, 2015; Santens & Verguts, 2011;
Sobel, Puri, & Faulkenberry, 2016).

More broadly, the present work aligns with several re-
cent studies that show support for competitive processing in
number tasks ranging among numerical parity (Faulkenberry,
2014), fraction comparison (Faulkenberry et al., 2015), com-
parison of number pairs (Ganor-Stern & Goldman, 2014),
and physical size comparison (Faulkenberry et al., 2016).
Such work builds upon recent computational models of num-
ber representation (Verguts et al., 2005; Gevers et al., 2006)
and adds to the body of work showing that visuo-spatial
coding alone is insufficient to account for the observed as-
sociations between symbolic number and space (Santens &
Gevers, 2008; Gevers et al., 2010). Note that the present
data do not completely rule out the mental number line as
part of our representation of symbolic number. Indeed, it
is likely that a hybrid of these models will best account for
existing data (van Dijck, Ginsburg, Girelli, & Gevers, 2014).
Futher, the present study adds to a growing body of work
on the dynamics of cognitive processing, representing di-
verse topics such as stereotype formation (Freeman & Am-
bady, 2009), language comprehension (Spivey et al., 2005),
memory (Abney, McBride, Conte, & Vinson, 2014; Papesh
& Goldinger, 2012), and face processing (Freeman & Am-
bady, 2011; Hehman, Carpinella, Johnson, Leitner, & Free-
man, 2014).

In summary, the present data provides support for a com-
petition model of response dynamics in a numerical compar-
ison task. Using computer mouse tracking, I showed that tra-
jectory curvature decreased as numerical distance from tar-
get to standard increases. Critically, this pattern appeared
regardless of the spatial congruity of response alternatives
(Experiments 1 and 2) or mouse movement direction (Ex-
periment 2). Such behavior cannot be adequately explained
by a direct mapping account, and instead reflects the role of
competitive processing in symbolic number representation.

1Thanks to an anonymous reviewer for pointing this out.
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