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Abstract 

Previous work has shown that the cognitive processes involved in mental arithmetic can be 

decomposed into three stages: encoding, calculation, and production. Models of mental 

arithmetic hypothesize varying degrees of independence between these processes of encoding 

and calculation.  In the present study, we tested whether encoding and calculation are 

independent by having participants complete an addition verification task.  We manipulated 

problem size (small, large) as well as problem format, having participants verify equations 

presented either as Arabic digits (e.g., “3 + 7 = 10”) or using words (e.g., “three + seven = ten”).  

In addition, we collected trial-by-trial strategy reports.  Though we found main effects of both 

problem size and format on response times, we found no interaction between the two factors, 

supporting the hypothesis that encoding and calculation function independently.  However, 

strategy reports indicated that manipulating format caused a shift from retrieval based strategies 

to procedural strategies, particularly on large problems.  We discuss these results in light of two 

competing models of mental arithmetic. 
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Mental Arithmetic Processes: Testing the Independence of Encoding and Calculation 

Mental arithmetic is a daily skill that involves several cognitive processes. For example, 

consider the period of time at the end of a meal when it is time to calculate a tip.  Calculating a 

gratuity (e.g., 20%) requires first looking at the lunch total and encoding the total into a mental 

representation. The gratuity is then calculated through some manipulation of previously learned 

mathematical facts (possibly including practiced procedures or direct memory retrieval), 

culminating in the production of an amount that is then written on the receipt. Though most 

researchers agree on framing mental arithmetic in terms of encoding, calculation, and retrieval 

(Campbell & Clark, 1988; Dehaene, 1992; McCloskey, 1992), there is considerable debate 

regarding the independence of these processes.  The purpose of the present study was to 

investigate the interaction between encoding and calculation in mental arithmetic.  

To study encoding and calculation, we relied upon two specific empirical effects found 

throughout the literature. First, a common signature of the calculation process is the problem size 

effect, which is the finding that response times and errors increase as problem operands grow in 

magnitude (Ashcraft, 1992; Campbell, Parker, & Doetzel, 2004; Groen & Parkman, 1972). For 

example, the simple addition problem 1+1 is typically solved more quickly and accurately than 

8+9. One early explanation for the problem size effect was Groen and Parkman’s (1972) “min” 

(minimum addend) model, in which the larger operand of a simple arithmetic problem (9) is 

fixed in the mind and the smaller operand (8) is added in increments of one until the total (17) is 

reached. Thus, the increase in RT from the problem 1+1 is attributed to an increase the number 

of increments calculated by the thinker. Such “min” counting is a prevalent operation employed 

by children, but adults are known to revert to this incremental technique only when direct 

retrieval fails (Groen & Parkman, 1972).  Later accounts of the problem size effect included the 
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network retrieval model (Ashcraft, 1987) and the network interference model (Campbell, 1987), 

both of which explained the problem size effect as due to the structure of arithmetic facts in long 

term memory.  Further explanations of the problem size effect have included roles for number 

fact acquisition and strategy selection.  For example, smaller problems are encountered more 

frequently and may be less sensitive to interference during retrieval from long term memory 

(Campbell & Alberts, 2009).  In addition, larger numbers are more likely to evoke procedural 

strategies (e.g., incremental counting) and are more error prone due the failing of retrieval 

activation (Campbell & Alberts, 2009; LeFevre, Sadesky, & Bisanz, 1997).   

Though there are several competing explanations for the problem size effect, the increase 

in response times for larger problems is robust, and hence, the problem size effect is a reliable 

marker of mental arithmetic.  Similarly, the encoding process in mental arithmetic is reflected by 

the format effect (Campbell, 1994; Dehaene & Cohen, 1995; Noël, Fias, & Brysbaert, 1997), 

where response times and errors increase when problems are presented in word problem format 

(Nine + three), as opposed to Arabic digits (9 + 3).  The penalty associated with changes in 

surface format may be attributed to lack of familiarity of word problems (Schunn et al., 1997). 

However, it is not clear whether these format effects are localized to the encoding process alone, 

or whether changes in format directly affect the calculation process.  

As such, the current research reveals a debate over how the processes of encoding and 

calculation interact. Models formed on the premise of no direct communication between 

encoding and calculation are called additive models (e.g., the Triple Code Model of Dehaene and 

Cohen, 1995), for they assert no interaction between encoding and calculation.  That is, 

arithmetic codes exiting the encoding phase will not affect the manner in which the arithmetic 

problem is calculated.  To be specific, such a model assumes that any differences in encoding 
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(e.g., manipulating surface format, such as “4+5” versus “four + five”) would not directly affect 

calculation processes (Dehaene & Cohen, 1995).   

One example of an additive model is Dehaene and Cohen’s (1995) Triple Code Model. 

This model accounts for numerical processing through three separate code systems: the auditory 

verbal word frame, analog magnitude representation, and visual Arabic number form. Each code 

subsystem is responsible for a different number processing task. The auditory verbal word frame 

mediates written and spoken input and output, while the visual Arabic number form handles 

digital input and output as well as multi-digit operations. Finally, the analog magnitude 

representation is recruited in core number operations of estimation, magnitude comparison, and 

potentially subitizing (Campbell & Epp, 2005, p. 347).  Critically, the Triple Code Model 

predicts that response time costs due to surface format manipulations can be attributed to the 

efficiency of transcoding the visual stimuli into their appropriate internal codes.  As calculation 

would take place entirely within the visual Arabic number form, there would be no downstream 

effect of format on the actual calculation process. 

A second class of models is characterized by an interaction between the encoding and 

calculation processes.  That is, the processes involved in calculation directly depend upon the 

format in which stimuli are encoded (Campbell & Alberts, 2009; Campbell, Parker, & Doetzel, 

2004). To illustrate, think back to the lunch bill example presented earlier.  If the bill was 

illustrated in Roman numerals rather than the typical Arabic digit format, one would expect that 

the time to calculate the tip would increase.  What is not clear is whether the source of this 

increase is due to the efficiency of encoding the Roman numerals into a mental representation 

consisting of Arabic digits (e.g., the Triple Code Model), or whether the process of encoding the 

Roman numerals fundamentally affects the processes involved in calculation.  Campbell and Epp 
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(2005) present such an interactive approach with their Encoding Complex model. They argue 

that problem operands automatically trigger a network of associations and operations related to 

the problem encoded.  Like the Triple Code Model, it views number processing as dependent 

upon representational codes (e.g., visual, verbal, magnitude).  However, successful number 

processing depends on the strength of the relationships between representational codes, termed 

skilled processing (Campbell & Epp, 2005). Presentation of problems in an unfamiliar format 

would result in greater response times and errors because participants are unable to “maximize 

activation of relevant information and minimize activation of irrelevant information” (Campbell 

& Epp, 2005, p. 350). That is, the manipulation of format would directly affect the calculation 

process. 

Evidence for an interactive model of mental arithmetic came from Campbell and 

Fugelsang (2001), who required participants to record their strategy choice after completing 

simple arithmetic problems.  Participants were presented single-digit addition problems in a 

true/false verification task with equations displayed in either Arabic digit format (“6 + 3 = 8”) or 

word format (“six + three = eight”).  Campbell and Fugelsang (2001) found that the problem size 

effect was larger for word problems than for digit problems.  This format x size interaction 

indicated that the response time costs associated with the word format were carried into the 

calculation stage, thus supporting an interactive model of mental arithmetic.  Further, Campbell 

and Fugelsang found that the most commonly reported strategy was direct retrieval from long 

term memory.  However, participants reported using procedural strategies more often than 

retrieval when solving word format problems, especially when the problem operands were large.  

That is, format had a direct effect on the types of strategies used in calculation, which further 

supports the interactive model. 
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The purpose of our study was to perform a replication of Campbell and Fugelsang (2001) 

with a different population. The participants in Campbell and Fugelsang (2001) were psychology 

students at a Canadian university.  Though Campbell and Fugelsang did not report educational 

backgrounds of their participants, Campbell (personal communication) has reported that many 

participants in his lab are educated in China, which may lead to differences in performance on 

mental arithmetic (Campbell & Xue, 2001).  We performed our replication on a sample of 

participants from Texas.  Based on the past literature, we expected to replicate both the effects of 

problem size (small problems should be solved faster than large problems) and problem format 

(digit problems should be solved faster than word problems). The critical test concerns whether 

format (digit, word) interacts with problem size (small, large) on response times.  If there is an 

interaction, the results would lend support for the interactive model of mental arithmetic 

(Campbell & Epp, 2005).  If there is no such interaction, the results instead support an additive 

model of mental arithmetic (Dehaene & Cohen, 1995), calling the results in Campbell and 

Fugelsang (2001) into question. 

Method 

Participants 

Twenty-three undergraduate students (18 female, mean age = 25.2 years, age range 19 to 

60) participated in this experiment in exchange for partial course credit in their psychology 

courses.  Within this sample, 16 self-identified their ethnicity as White, two self-identified as 

Black, and five as Hispanic. The experiment was reviewed and approved by the institutional 

review board at Tarleton State University.  

Design and Stimuli 
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Each participant completed 288 trials consisting of four blocks of 72 single-digit addition 

verification problems. On even numbered trials, questions were presented as word problems in 

lower case English (“five + seven = twelve”).  On odd numbered trials, questions were presented 

in Arabic digit format (“5 + 7 = 12”).  Problems were composed of addends ranging from 2 to 9, 

resulting in a set of 36 problems ranging between 2 + 2 = 4 and 9 + 9 = 18 (note that commuted 

pairs such as 2 + 6 and 6 + 2 were counted as one problem). In each block, each of the 36 

problems was presented once in digit format and once in word format.  Problem size was defined 

as either small (product of operands less than or equal to 25) or large (product of operands 

greater than 25).  Within each set of 36 problems, 18 were presented as true equations (e.g., “2 + 

4 = 6”) and 18 were presented as false equations (e.g., “2 + 4 = 7”).  Across all four blocks, each 

addition problem was tested in each format twice in a true equation and twice with a different 

false answer.  False answers were generated pseudo-randomly to be within ± 4 of the correct 

answer and never corresponded to either the difference or the product of the operands. Within 

each set of false answers, each of the numbers 4 to 18 (i.e. the range of true answers) occurred at 

least once but no more than four times.  

All equations appeared as white characters against a black background, displayed in 36 

point Lucida Grande font.  For all equations the two operands were separated by a single space 

on either side of the + sign (e.g. three + eight = eleven).  The answer to be verified appeared 

simultaneously with the problem operands. Following each verification trial, participants were 

asked to indicate the strategy they used by selecting one of five strategy descriptions (originally 

presented in Campbell and Fugelsang, 2001): “RECOGNITION = you thought the equation was 

true because it seemed familiar or looked right, or false because it seemed unfamiliar or looked 

wrong; REMEMBER & COMPARE = you remember the correct answer and then compared it to 
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the presented answer; CALCULATE & COMPARE = you calculated to get the correct answer 

and then compared it to the presented answer; ODD/EVEN RULES = you used odd/even rules to 

deduce that the equation was false; OTHER = you used some other calculation strategy (e.g. 

subtraction) or are uncertain.” 

Procedure 

Even numbered participants selected “true” responses by pressing the right button of a 

response box, and odd numbered participants selected “true” responses by pressing the left 

button.  Each participant was instructed to respond quickly but accurately.  

 Prior to the first block, each participant completed 12 practice trials in alternating word 

and digit format using the operand 0 or 1 paired with 0 to 9.  At the beginning of each trial, a 

fixation point appeared at the center of the screen.  When ready to begin, participants initiated 

the presentation of the equation with a button press.  The fixation dot flashed for 1 second and 

was then replaced with an equation. The timer began with the presentation of this equation and 

ended with the participant’s manual response (a button press indicating true or false).  All 

response times were accurate to ± 1 ms. After each response, feedback was given; a green C for 

correct or red E for error flashed on the screen for 300ms. On the subsequent screen, the prompt 

“Strategy Choices” appeared with the cues Recognition, Remember & Compare, Calculation, 

Odd/Even Rules, or Other aligned vertically below. The experimenter recorded the strategy 

choice on each trial with a press of a keyboard button, clearing the screen and prompting the 

fixation point for the next trial. 

Results 

 Participants completed a total of 6,624 experimental trials.  Of these, we removed 423 

trials that contained an error response (6.4%).  From the remaining correct trials, we removed an 
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additional 118 trials (1.9%) for which response time (RT) exceed 3 standard deviations from the 

mean RT over all trials (M = 1708 ms, SD = 1056 ms).  All RT analyses were performed on the 

remaining 6,083 trials. 

Response time analysis 

 We submitted correct RTs to a 2 (Problem Size: small, large) x 2 (Format: digit, word) x 

2 (Truth Value: true, false) repeated measures analysis of variance.  Results can be seen in Figure 

1.   As expected, there was a significant main effect of Problem Size, F (1, 22) = 72.3, p < 0.001, 

ηp
2 = 0.77.  RTs for large problems (M = 1819 ms) were longer than for small problems (M = 

1453 ms).  Also, there was significant main effect of Format, F (1, 22) = 327.8, p < 0.001, ηp
2 = 

0.94, with word problems (M = 1880 ms) taking longer to verify than digit problems (M = 1392 

ms).  Finally, there was a significant main effect for Truth Value, F (1, 22) = 35.1, p < 0.001, ηp
2 

= 0.61, with false problems (M = 1742 ms) taking longer to verify than true problems (M = 1530 

ms).  There was a small, but statistically significant interaction between Problem Size and Truth 

Value, F (1, 22) = 4.6, p = 0.04, ηp
2 = 0.17.  As can be seen in Figure 1, the problem size effect, 

operationalized as the difference between RT for large problems and small problems, was 

slightly smaller for false problems (mean difference = 333 ms) than for true problems (mean 

difference = 400 ms).  Critically, there was no interaction between Problem Size and Format, F 

(1, 22) = 0.03, p = 0.86, ηp
2 < 0.01, lending support for an additive model of mental arithmetic 

(Dehaene & Cohen, 1995) over an interactive model (Campbell & Epp, 2005).  No other terms in 

the ANOVA model were significant (all F-values less than 0.5). 

Strategy Reports 

 Similar to Campbell and Fugelsang (2001), we calculated the mean percentage use of 

three prevalent strategies, Calculate & Compare, Recognition, and Remember & Compare, 



MENTAL ARITHMETIC PROCESSES 11 

which is presented in Table 1.  Notice that Recognition was used on most trials, but this strategy 

shifted to Calculate & Compare for large word problems.  Whereas the RT analysis above did 

not bear out a Problem Size x Format interaction, the strategy reports do seem to indicate that 

format and problem size interact with regard to the types of strategies used. 

Discussion 

 The purpose of the present study was to perform a replication of Campbell and Fugelsang 

(2001) and test the independence of encoding and calculation.  We did this by having 

participants perform an arithmetic verification task and give trial-by-trial strategy reports.  We 

tested 23 participants who verified whether addition equations were true or false in multiple 

conditions derived from manipulating problem format (Arabic digits or word problems) and 

problem size (small or large).  

 Given that the effects of problem size and format are strong in the literature (Ashcraft, 

1992; Campbell, 1994; Campbell, Parker, & Doetzel, 2004; Dehaene & Cohen, 1995; Groen & 

Parkman, 1972; Noël, Fias, & Brysbaert, 1997), we expected to find significant main effects of 

both.   This expectation was confirmed.  We found a large main effect of problem size; response 

times increased when problem operands increased in magnitude. We also found a large main 

effect of surface format; response times for equations in word format were larger than response 

times for equations in Arabic digit format.  

The critical test for independence of encoding and calculation came from testing the 

interaction between the factors of problem size and format. Recall that an additive model (e.g., 

Dehaene & Cohen, 1995) is based on the premise of no direct communication between encoding 

and calculation processes. That is, codes acquired in the encoding phase do not affect the manner 

in which calculation occurs. For example, Dehaene and Cohen’s (1995) Triple Code model 
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would predict that the verbal auditory word frame subsystem would encode stimuli in word 

format (e.g., “six + nine = fifteen”) and transform them into the appropriate internal code for 

calculation, which would be the visual Arabic form.  Subsequently, this visual Arabic number 

form would account for calculation independently of the initial form of the stimulus. Thus, the 

effect of problem size (a calculation effect) would be the same regardless of initial format, which 

would imply that there is no interaction between problem size and format.  

Alternatively, an interactive model (e.g., Campbell & Epp, 2005) would predict a direct 

influence of encoding on calculation. For example, Campbell and Epp’s (2005) Encoding 

Complex Model would predict that the presented problems would activate a rich network of 

associations, including activations of both correct and incorrect answers which are all used in the 

calculation process.  Presenting problems in an unfamiliar format (such as word format) would 

lessen the activation strength of the correct answer and potentially increase activation strength of 

incorrect answers, thus exacerbating the effect of problem size on RT.  That is, encoding factors 

would directly affect the calculation process, implying that there would be an interaction 

between problem size and format.   

 Critically, we did not find a statistically significant interaction between format and 

problem size on RT.  This finding is in opposition to that of Campbell and Fugelsang (2001).  

Rather, our results support an additive model of arithmetic processing. However, our participant 

strategy reports mirror those from Campbell and Fugelsang (2001).  Like Campbell and 

Fugelsang’s (2001) participants, our participants utilized the recognition strategy most often to 

solve equations, but showed a shift from recognition to procedural strategies when encountering 

large word problems. This strategy shift suggests that manipulations in the presentation format of 

equations may alter the strategy used to complete the equations.  That is, format manipulations 
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seem to have downstream effects on the calculation process, which is the signature of an 

interactive model of arithmetic processing.  

 Thus, the results of our study are mixed.  Response time patterns indicate support for an 

additive model of arithmetic processing, whereas strategy reports support an interactive model. 

However, some limitations to this study demand that the results be interpreted tentatively. With a 

relatively small sample size, we may not have had sufficient power to detect the interaction of 

problem size and format on response times.  However, the expected effects of problem size and 

format were sufficiently robust, and the extremely small F-ratio (F = 0.03) on the problem size x 

format interaction makes reduced power an unlikely culprit.  The nature of the verification task 

should be interpreted in context as well.  Unlike a production task in which the answer is 

provided by the participant, a choice is made about a potential answer provided on each trial. 

This could affect the RT because the participant could rely on recognizing the answer provided 

rather than reaching the answer independently.  That is, the verification task may not truly reflect 

calculation processes in the same way as a production task.   

 Given these contradictory findings, which result should we believe?  Strategy reports are 

known to be questionable indicators of mental processes (Cooney & Ladd, 1992; Russo, 

Johnson, & Stephens, 1988).  Response time patterns have long been the gold standard in 

cognition research, and as such, they should be interpreted accordingly.  The absence of an 

interaction between problem size and format gives us a fair amount evidence in support of an 

additive model of mental arithmetic (e.g., Dehaene & Cohen, 1995).  Future work could 

investigate the nature of strategy reports in mental arithmetic using free response setting rather 

than the forced choice setup we used.  
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 In summary, we found support for an additive model of mental arithmetic performance, 

as predicted by Dehaene and Cohen (1995).  Our results indicate that the stages of encoding and 

calculation in mental arithmetic are functionally independent.  This result helps to further specify 

the cognitive mechanisms behind mental arithmetic and further clarify how adults go about the 

daily task of doing mental calculations.
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Table 1 

Percentage reported use of strategies as a function of truth, format, and problem size 

  True problems  False problems 

 Format Small Large  Small Large 

Recognition Digits 54.4 55.5  52.1 54.2 

 Words 43.7 27.4  41.1 29.1 

       

Remember 
and compare Digits 24.4 21.4  23.0 21.8 

 Words 31.3 27.2  23.7 22.9 

       

Calculate 
and compare Digits 20.4 22.1  24.2 22.7 

 Words 24.2 43.5  34.0 47.5 
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Figure 1.  Mean RT as a function of problem size (small, large), format (digits, words), and truth 

value (true, false).  Error bars represent within-subject 95% confidence intervals as 

recommended by Morey (2008). 
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