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Abstract

Decisions involving comparisons of Arabic number digits often exhibit an
interference between the physical size of the digit and the implied numerical
magnitude, a phenomenon called the size-congruity e�ect. Related research
over the past four decades has yielded two competing models of the phe-
nomenon: an early interaction account, where interference between numerical
and physical magnitude occurs at an early encoding stage, and a late in-
teraction account, where the interference occurs downstream as response
competition during the decision process. In the present study, we asked
participants to compare the physical sizes of pairs of Arabic digits. We
fit the resulting response time distributions with a shifted Wald model, a
single boundary accumulator model, which gave us estimates of information
accumulation rate (drift rate), response threshold, and nondecision time.
We found that incongruity between physical size and numerical magnitude
a�ected the decision-related estimates of drift rate and response threshold.
Further, a Bayesian analysis confirmed a null e�ect of congruity on nondeci-
sion time. These results indicate that the observed interference originates
from decision-related processes, lending further support for a late interaction
account of the size-congruity e�ect.
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an important skill that is rooted in basic evolutionary mechanisms (Cantlon & Brannon,
2006). This ability is exhibited regularly in two di�erent types of judgments. One type
of judgment is based on physical magnitude, where competing items are judged based on
physical size characteristics (e.g., area, volume, etc.). For example, one might choose the
larger of two sandwiches from a plate by deciding which appears to have the larger volume.
Another type of judgment is based on numerical magnitude, where competing items are
judged based on numerosity. For example, when buying grapes in a grocery store, a shopper
might choose one bunch that appears to contain many grapes over another bunch that
appears to contain fewer grapes. On the surface, these two types of judgments seem quite
distinct, as they appear to ask di�erent questions – a physical magnitude judgment asks
“how much?”, whereas a numerical magnitude judgment asks “how many?” In spite of this
appearance, these two types of judgments can interact in the context of symbolic number
judgments, where the items to be compared (Arabic number digits) possess both physical
magnitude (the physical size of the number digit) and numerical magnitude (the underlying
quantity represented by the number digit). The purpose of the present study is to examine
the interaction between physical and numerical magnitude in symbolic number judgments.

An example of this interaction occurs in a typical laboratory task where a participant
is presented with two number symbols, but one number is presented in a larger font than the
other (see Figure 1). Suppose further that the participant is asked to ignore numerical value
and choose the physically larger digit. Even though numerical magnitude is irrelevant to
this comparison task, participants are usually slower to respond on trials where physical and
numerical magnitude are incongruent with each other (e.g., a large 2 paired with a small 8,
as in the right panel of Figure 1), compared to trials on which physical and numerical size are
congruent (e.g., a small 2 paired with a large 8, as in the left panel of Figure 1). This relative
slowdown in the magnitude comparison is called the size-congruity e�ect, a well-studied
phenomenon in the fields of decision making and numerical cognition (Faulkenberry, Cruise,
Lavro, & Shaki, 2016; Henik & Tzelgov, 1982; Paivio, 1975; Schwarz & Heinze, 1998).

One might note that this size-congruity e�ect is a bit of a curious result; indeed,
participants could simply adopt a strategy of ignoring the identity of the numerical digit
and simply focus on the physical size, as the task requires. However, the presence of the
size-congruity e�ect implies that individuals simply cannot ignore the numerical value. On
its own, the e�ect is certainly interesting. However, the size-congruity e�ect may perhaps
be even more important for the subsequent debate it has generated concerning the nature
of number representation. According to one theoretical account, the size-congruity e�ect
occurs because a digit’s physical size and numerical magnitude are both encoded into a
common, analog represention, upon which further processing occurs in a serial fashion. This
early interaction account (Reike & Schwarz, 2017; Schwarz & Heinze, 1998; Sz�cs & Soltész,
2007, 2008) predicts that the relative slowdown on incongruent trials is due to interference
at the encoding stage.

An alternative account posits that physical size and numerical magnitude are encoded
separately along independent pathways, and the interference between physical size and
numerical magnitude occurs as competition between parallel and partially active response
options (Faulkenberry et al., 2016; Santens & Verguts, 2011). In contrast to the early
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Figure 1 . Example stimuli in a physical size comparison task. The left panel depicts a
congruent trial, where the physically larger digit (8) is also the numerically larger digit.
The right panel depicts an incongruent trial, where the physically larger digit (2) is the
numerically smaller one.

interaction account, this late interaction account predicts that the locus of the size-congruity
e�ect is not in the encoding stage, but rather in the decision stage.

A variety of paradigms have been employed to test between these competing models
of the size-congruity e�ect, including classical response time (RT) tasks (Henik & Tzelgov,
1982), electrophysiological techniques (Schwarz & Heinze, 1998; Sz�cs & Soltész, 2007, 2008),
neuroimaging (Cohen Kadosh et al., 2007), computer mouse tracking (Faulkenberry et al.,
2016), and visual search (Krause, Bekkering, Pratt, & Lindemann, 2016; Sobel, Puri, &
Faulkenberry, 2016; Sobel, Puri, Faulkenberry, & Dague, 2017). However, the outcomes
of these multiple approaches have proved to be equivocal; some studies support the early
interaction account, whereas others support the late interaction account. As such, a clear
consensus on the origin of the size-congruity e�ect remains elusive.

A potentially fruitful method for elucidating the nature of the size-congruity e�ect
may come from employing accumulator models to describe the distributions of RTs that are
produced in the comparison task. Generally speaking, an accumulator model posits that
responses in decision tasks stem from a process that involves noisy accumulation of stimulus
information over time. When the accumulated information reaches a certain threshold, a
response is initiated. An advantage of using an accumulator model for modeling RTs is
that by fitting such a model, one obtains estimates of distributional parameters that can
directly index the underlying cognitive processes involved in the decision, such as the rate of
information accumulation, the response threshold, and the duration of non-decision processes
including encoding and response production (Anders, Alario, & Maanen, 2016). Further,
these models are quite good at describing the shape of typical RT distributions, which tend
to be positively skewed (Luce, 1986). From a measurement standpoint, this allows one to
model the e�ects of experimental manipulations on the entire distribution of RTs, rather
than simply modeling the e�ects of manipulations on the collapsed means or medians. The
use of accumulator models has a rich history in the behavioral sciences (Link & Heath, 1975;
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Figure 2 . E�ects of manipulating shifted Wald (SW) parameters on the shape of distributions.
In all three plots, the solid line depicts a SW density with drift rate = 3, response threshold
= 1, and nondecision time = 0.2 sec. The dotted line depicts the resulting density when
exactly one of the parameters gets increased.

Luce, 1986; Ratcli� & McKoon, 2008; Ratcli�, Smith, Brown, & McKoon, 2016). However,
the use of such models has been relatively limited in the context of numerical cognition.

Whereas some accumulator models have been quite well studied in the context of
two-choice decision tasks, such as the drift di�usion model (Ratcli� et al., 2016) and the
linear ballistic accumulator model (Brown & Heathcote, 2008; Heathcote & Hayes, 2012),
such models are typically best suited for tasks in which the error rate is su�ciently large
(Anders et al., 2016). As a consequence, these models are di�cult to fit in tasks with very
low error rates, such as the ones typically employed in the context of single-digit symbolic
number representations. An alternative to the drift di�usion and linear ballistic accumulator
models is the shifted Wald model (Anders et al., 2016; Schwarz, 2001). The shifted Wald
model is a single-boundary accumulator model whose probability density represents the
distribution of first-passage times of a continuous di�usion process that drifts (with rate “)
toward a single boundary of height –. Mathematically, the probability density is given by

f(x | “, –, ◊) = –


2fi(x ≠ ◊)3 · exp

A

≠(– ≠ “(x ≠ ◊))2

2(x ≠ ◊)

B

where x > 0 represents a specific data point (i.e., a single response time), “ is the drift rate, –

is the response threshold, and ◊ is a rightward shift of the entire distribution that represents
nondecision time. Descriptively, each parameter characterizes a specific characteristic of the
distribution’s appearance. This can be seen in Figure 2, which depicts the e�ect of selectively
increasing each shifted Wald parameter. Increasing drift rate “ results in a “spreading out”
of the distribution, but leaves the mode relatively stable. Increasing response threshold –

increases variance to a lesser extent than does an increase of “, but the mode is shifted quite
substantially rightward. Increasing nondecision time ◊ does not change the variance, but
instead results in a pure “shift” of the distribution rightward.

An important consideration for the present study is that each of the three shifted
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Wald parameters can be interpreted as an index of specific cognitive processes (Anders
et al., 2016; Heathcote, 2004; Schwarz, 2001). This idea is depicted in detail in Figure 3.
Specifically, drift rate “ indexes rate of information uptake from encoded stimuli, and can
be influenced by individual processing di�erences or stimulus characteristics that reflect
task di�culty. Mathematically, the drift rate represents the rate at which information
stochastically accumulates toward an absorbing boundary; as such, it is an intuitive proxy
for rate of information uptake. Response threshold – represents the height of the absorbing
boundary of the accumulator; larger values of – would require the accumulator to proceed
longer before “hitting” the boundary. Thus, response threshold – is a natural index of
response caution in the sense that it represents the amount of accumulated information
required before initiating a response. Finally, nondecision time ◊ represents a horizontal
shift of the accumulator function; this accounts for any elapsed time that is not already
accounted for by either drift rate or response threshold. Thus, nondecision time ◊ is used
to index any processes that are not related to the decision-related accumulation process,
such as low-level perceptual processing or response production (i.e., motor preparation for a
button press).

Several recent studies have used the shifted Wald distribution to index processes in
cognitive tasks. For example, Anders, Riès, Maanen, and Alario (2015) fit RT distributions
in a picture naming task and found that greater semantic interference resulted in slower drift
rate (i.e., slower information accumulation) and larger response threshold, but no change
in nondecision time. These e�ects on the shifted Wald parameters were largely consistent
with predictions of the “dark-side model”, a model of lexical choice in psycholinguistics
(Oppenheim, Dell, & Schwartz, 2010). Another example in the context of numerical cognition
comes from Faulkenberry (2017), who had participants complete an addition verification
task under varying problem formats (words or digits). He found that presenting problems
in word format resulted in a decrease in drift rate, concluding that the e�ect of problem
format is not isolated to the encoding stage, but rather has a direct impact on calculation
processes as well. This result was interpreted as support for an interactive model of mental
arithmetic processing (Campbell & Clark, 1988; Campbell & Epp, 2004).

Against this background, the aim of the present study is to use the shifted Wald
distribution as a model to permit a fine-grained examination of the size-congruity e�ect.
Instead of collapsing participants’ RT distributions to single-valued summary statistics
(e.g., means or medians) and examining the e�ect of physical-numerical size congruity on
these means/medians, we instead fit the distributions to a shifted Wald distribution, which
yields estimates of drift rate, response threshold, and nondecision time in each experimental
condition. If the early interaction account is correct, one should expect the size congruity
e�ects to stem from the stimulus encoding stage, and thus, one should see a congruity e�ect
on our estimates of nondecision time. If, on the other hand, the late interaction account is
correct, the size congruity e�ect should stem from post-encoding decision processes, and
thus, one should see congruity e�ects on our estimates of drift rate and response threshold.
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Figure 3 . The shifted Wald as a cognitive model, describing RT as the time for an accumulator
to drift toward and hit a single boundary – at rate “ = 2.0. The nondecision time ◊ = 0.15
represents the component of RT which is not due to this accumulation process. The solid
black line represents the accumulator for a single trial, whereas the dashed upper curve
represents the shifted Wald distribution formed by collecting RTs for many such trials.

Method

Participants

Twenty-three undergraduate psychology students participated in the experiment for
partial course credit. Informed consent was obtained from all individuals who participated
in the study.

Stimuli and procedure

The experiment was implemented via the OpenSesame software package (Mathôt,
Schreij, & Theeuwes, 2011), which was run on a 20 inch iMac computer with a screen
resolution of 1680 x 1050 pixels. Participants used a standard Dell keyboard for input. At
the beginning of the experiment, participants were told that they would be presented with
pairs of numbers, with each number being displayed in a di�erent font size. Furthermore,
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they were told to quickly and accurately indicate (via a keypress) which digit was physically
larger, pressing the “A” key if the number on the left was larger, and pressing the “L” key if
the number on the right was larger.

The number pairs were constructed from the single-digit Arabic numerals 2, 3, 4, 5, 6,
7, and 8. Pairs were chosen in order to balance the numerical distance between numerals.
Ignoring order, there were 12 possible pairs of numbers: 2-3, 3-4, 4-5 (distance 1); 2-4, 3-5,
4-6 (distance 2); 2-5, 3-6, 4-7 (distance 3); 2-6, 3-7, 4-8 (distance 4).

The size-congruity manipulation was created by varying the font size of each digit in
the number pair. Specifically, the physically smaller digit was presented in 28 point font,
whereas the physically larger of the pair was presented in 36 point font. This resulted in
two di�erent congruity conditions – congruent trials, in which the numerically larger digit
was also physically larger, and incongruent trials, in which the numerically larger digit was
physically smaller. Each pair was also presented in two di�erent left-right orders and two
di�erent font configurations (smaller/left;larger/right or smaller/right;larger/left). In all,
this resulted in 12 ◊ 2 ◊ 2 ◊ 2 = 96 experimental trials per block.

Participants completed 4 blocks of these 96 experimental trials (384 trials total) in
a single experimental session lasting approximately 20 minutes. Each experimental trial
began with a fixation cross displayed for 500 milliseconds, followed immediately by a pair of
numbers. The center of the leftmost number was positioned 300 pixels (12.5 degrees) to the
left of the center of the screen, whereas the center of the rightmost number was positioned
300 pixels (12.5 degrees) to the right of center (resulting in a visual angle between numbers
of approximately 25 degrees). For each trial, the number pair remained on the screen until a
response was made. If the response was correct, no feedback was given, and the next trial
began immediately. If the response was incorrect, a red “X” was presented in the center of
the screen for 1 second, after which the next trial began.

All data from this experiment were uploaded nightly to Github via a born open protocol
(Rouder, 2016). These data (along with the experiment script) are available for download at
https://git.io/vAEE8.

Results

Participants completed a total of 8832 experimental trials. We discarded 433 trials that
contained an incorrect response (error rate = 4.90%). Further, we removed an additional
87 trials for which response time was below three median absolute deviations (MAD) and
above six MAD from the overall median RT (median RT = 559 msec, MAD = 142.33 msec)
(Leys, Ley, Klein, Bernard, & Licata, 2013). This cleaning procedure resulted in retaining a
total of 8312 trials (94.10% of original trials) for further analysis.

The general analysis plan throughout the paper is as follows. First, each hypothesis
test was computed as a traditional frequentist test (specifically, a paired-samples t-test).
Afterward, we performed a default Bayesian t-test (Rouder, Speckman, Sun, Morey, &
Iverson, 2009) to obtain a Bayes factor, a likelihood ratio which provides a continuous
measure of the extent to which the observed data is more likely to have occurred under one

https://git.io/vAEE8
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Figure 4 . Distributions of response times (in seconds) as a function of congruity (congruent
versus incongruent).

hypothesis than another (Kass & Raftery, 1995). As such, the Bayes factor provides a direct
index of our relative belief in one of two competing hypotheses. Notationally, B10 represents
a Bayes factor for the alternative over the null, whereas B01 represents a Bayes factor for
the null over the alternative. This approach is especially useful in the case of null e�ects,
which cannot be coherently argued for within a frequentist framework (Wagenmakers, 2007).
As recommended by (Dienes & Mclatchie, 2018), we combine both frequentist and Bayesian
procedures in our reporting. By doing this, we can combine the familiarity of the orthodox
frequentist approach with a Bayesian measure of evidential value that is provided by our
data.

As expected, we found a significant size congruity e�ect on RTs in the physical
comparison task. As can be seen in Figure 4, the peak of the RT distribution for incongruent
trials was shifted rightward compared to the distribution for congruent trials, indicating
that incongruent trials took longer to compare than congruent trials. This was confirmed by
a paired samples t-test, from which we found a signficant e�ect of congruity on median RTs,
t(22) = 6.30, p < .001. On average, responses for incongruent trials were 63 milliseconds
slower than congruent trials. This result was well supported by a Bayesian t-test, which
produced a Bayes factor of B10 = 15,679.05. This indicates that the observed data are
approximately 15679 times more likely under the alternative hypothesis than the null
hypothesis, which provides substantial evidence in favor of a congruity-related increase in
median RT.
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Figure 5 . Means of shifted Wald parameters presented as a function of congruity (congruent
versus incongruent). Panel A depicts drift rate, which indexes rate of information accu-
mulation from stimuli. Panel B depicts response threshold, which indexes the amount of
accumulated information required before response initiation. Panel C depicts nondecision
time, which indexes the amount of time required for nondecision processes (e.g., encoding
and response generation).

Table 1
Descriptive statistics for shifted Wald parameters

Drift rate “ Response threshold – Nondecision time ◊

Congruity M SD M SD M SD

congruent 3.91 0.70 0.92 0.17 0.32 0.05
incongruent 3.30 0.51 1.04 0.22 0.32 0.05

Note. M = mean, SD = standard deviation

Also apparent from Figure 4 is an increase in the spread of the RT distribution for
incongruent trials. This was again confirmed by a paired samples t-test: standard deviations
were signficantly larger for incongruent trials compared to congruent trials, t(22) = 5.54,
p < .001. Similar to median RTs, a Bayesian t-test produced a Bayes factor of B10 =
3,152.15. As with median RTs, this result implies that the observed data are approximately
3152 times more likely under the alternative than the null, giving us much evidence in favor
of a congruity-related increase in standard deviations.

Next, we attempted to more fully describe the e�ects of physical-numerical size
congruity on the distributions of response times. To this end, we fit the distributions with
a shifted Wald model. Specifically, each participant’s distribution of RTs was split into
congruent trials and incongruent trials. Then, each of these two distributions was fit with a
shifted Wald model using the method of Anders et al. (2016). This resulted in a collection
of parameters “ (drift rate), – (response threshold), and ◊ (nondecision time) for each of the
46 combinations of congruity (congruent, incongruent) and participant (N = 23). We then
tested the e�ects of congruity on the shifted Wald parameters by submitting each parameter
to a paired samples t-test. As above, we further validated each result by measuring the
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evidential value of data in each test via a Bayesian t-test.

The e�ects of physical-numerical size congruity on each shifted Wald parameter can
be seen in Table 1 as well as in Figure 5. For drift rate “, there was a significant e�ect of
congruity, t(22) = ≠5.27, p < .001. As can be seen in Figure 5A, mean drift rate was smaller
for incongruent trials (M = 3.30) than for congruent trials (M = 3.91). This indicates that
the rate of information accumulation from incongruent trials was reduced compared to trials
in which the physical magnitude comparison was congruent with the numerical magnitude
comparison. A Bayesian t-test yielded a Bayes factor of B10 = 1,729.35. This indicates that
the observed data are approximately 1729 times more likely under the alternative hypothesis
than the null hypothesis, which provides very strong evidence in favor of a congruity-related
decrease in drift rate.

Figure 5B shows that congruity also had a significant e�ect on response threshold –,
albeit in the opposite direction, t(22) = 3.15, p = .002. The mean response threshold was
larger for incongruent trials (M = 1.04) than for congruent trials (M = 0.92), which indicates
that in addition to a reduction in the rate of information accumulation on incongruent
trials compared to congruent trials, participants also required more information before
making a decision on such trials. A Bayesian t-test resulted in a Bayes factor of B10 =
18.60, indicating that the observed data are approximately 19 times more likely under the
alternative hypothesis than the null. Such a Bayes factor is generally interpreted as positive
evidence in favor of a congruity-related increase in response threshold.

Finally, Figure 5C shows that congruity did not have a significant e�ect on nondecision
time ◊, t(22) = ≠1.16, p = .870. Note that in a frequentist framework, the absence of a
significant e�ect does not constitute evidence for a null e�ect (Wagenmakers, 2007). We can,
however, measure the evidence for a null e�ect using a Bayes factor. To this end, a Bayesian
t-test produced a Bayes factor of B01 = 8.96, which means that the observed data were
approximately 9 times more likely under the null hypothesis than the alternative hypothesis,
giving us positive evidence in favor of a null e�ect of congruity on nondecision time.

Discussion

The purpose of the present study was to use response time modeling to provide a
fine-grained examination of the timecourse of the size congruity e�ect. Specifically, we aimed
to use the results of this modeling to test between two competing models of the size congruity
e�ect: an early interaction model, where the interference between physical and numerical
magnitude is purported to be an encoding e�ect which occurs an at early representational
stage, and a late interaction model, where interference occurs at later, decision-related
stages.

As was expected, we found a large e�ect of physical-numerical congruity on median
response times, which incongruent trials requiring significantly more time for comparison
than congruent trials. Further, we found that the standard deviation of the response time
distributions increased for incongruent trials. Such an increase in both the center and spread
of the response time distributions indicates a need for more fine-grained analysis of the
e�ects of congruity on the response times distributions. To this end, we used a shifted
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Wald distribution (Anders et al., 2016), a single-boundary accumulator model, to provide a
three-parameter description of the distributions in each congruity condition.

We found that congruent trials resulted in signficant changes to two of the three
shifted Wald parameters. The observed increase in median RT and standard deviation
that occured for incongruent trials was due primarily to a decrease in drift rate and an
increase in response threshold. The decrease in drift rate means that, for incongruent trials,
stimulus information was accumulated more slowly than for congruent trials. Simultaneously,
there was an increase in response threshold, indicating that participants adopted a larger
threshold for information that was required to be accumulated before making a decision.
Critically, there was no e�ect of congruity on nondecision time. In all, the present data
indicates that the congruity manipulation had e�ects on decision-related parameters (drift
rate and response threshold) and no direct e�ect on the parameter related to encoding
(nondecision time). By implication, the mismatch between numerical and physical size seems
to impede participants’ ability to extract magnitude information from the encoded stimuli as
well as increase participants’ threshold for information required before initiating a response.
However, there seems to be no e�ect of congruity on early perceptual processing. As such,
the pattern of observed behavior lends direct support to a late interaction model of the size
congruity e�ect.

Such a conclusion is in general agreement with several other recent studies on the
locus of interference in the size congruity e�ect, which have used a variety techniques ranging
from visual search (Sobel et al., 2016, 2017) to computer mousetracking (Faulkenberry
et al., 2016). The cumulative data from these studies lend converging evidence on the
late-interaction account of the size congruity e�ect. In turn, these data further support to
a response competition model of number comparison put forth by Verguts and colleagues
(Gevers, Verguts, Reynvoet, Caessens, & Fias, 2006; Verguts, Fias, & Stevens, 2005).

The present study is also novel in its use of response time modeling in the context of
numerical cognition. Such models have been used successfully in a variety of other domains,
and their advantages have been discussed previously. Note that we chose to a version of the
number comparison task where participants were asked to choose the physically larger of
the two presented digits. One could have easily used a version where participants are asked
to choose the numerically larger of the two digits. Indeed, this would be an interesting
direction for future work, as Arend and Henik (2015) recently showed that the size-congruity
e�ect is larger for the numerical version of the task. In this task, one must additionally
consider the instruction (“choose larger” versus “choose smaller”), as Arend and Henik also
demonstrated that the “choose larger” instruction resulted in the larger size-congruity e�ect.
This modulation of task instruction (see also Faulkenberry, Cruise, & Shaki, 2018) could
very well have important downstream consequences for our modeling work here, and as
such, a full interpretation of our results is necessarily tentative until further study can be
completed.

In summary, the present data shows that the size congruity e�ect in physical number
comparison arises due to late, response-related decision processes, and is not localized to an
early encoding stage. As such, the data lends support for a late-interaction account of the
size congruity e�ect.
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