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INTRODUCTION

In this paper, we discuss the historical roots and the 

practical uses of constructivism in the mathematics classroom.  

Constructivism is the popular, yet mildly controversial belief 

that students construct their own knowledge through self-

modification of cognitive structures. This self-modification 

is a largely unconscious, yet goal-directed, process by which 

the student reacts to a cognitive disturbance by changing how 

he or she thinks about a concept to accommodate the novel 

piece of information, thus relieving the cognitive disturbance.  

Essentially, this means that when the student encounters a 

hard problem, the student (ideally) reacts by thinking about it 

until it makes sense.  This challenges the classic behaviorist 

model where a student is presented with stimuli (problems, 

exercises, etc.) and shown how to achieve a certain response.  

The behaviorist model requires some sort of external reward.  

In contrast, the main tenet of constructivism is that no external 

reward is necessary; rather, the “comfort” of the newly modified 

cognitive structure is rewarding in itself.

Constructivism is a part of several psychological theories.  

The historical roots of constructivism as a psychological theory 

are most commonly traced to the work of Jean Piaget, although 

there are some elements of Piaget’s constructivism that come 

from the early Gestalt psychologists.

As collegiate mathematics education teachers and 

researchers, we have much experience with constructivism as 

both a research paradigm and a teaching method.  The success 

of constructivism, both as a pedagogical technique and as a 

psychological theory, provides converging evidence of its 

utility.  We now discuss these two facets in detail.

CONSTRUCTIVISM AS PEDAGOGY

The view of constructivism as a psychological theory 

tells us much about how students learn mathematics.  Using 

this information, many teachers have begun to think about 

exactly how they conduct their mathematics classrooms.  The 

standard model for mathematics teaching has long been the 

lecture, as exemplified in Krantz (1999, p. 12), where he says, 

“Lectures have been used to good effect for more than 3000 

years.”  While no one will probably deny that they have seen 

some very effective lectures in their educational experience, 

the modern thought is that a good majority of lectures tend to 

be rather ineffective, especially in the mathematics classroom.  

As Dubinsky (1999) points out, how do we really know what 

the classroom style of Newton was like?  There seems to be no 

historical documentation pointing to the exact teaching style of 

these great mathematicians.

The use of constructivism in the mathematics classroom 

has many variations.  The one thing that these variations have 

in common, however, is the central role of the student in the 

learning process.  In the following, we will present some 

examples of classroom events that demonstrate the student-

centered constructivist approach.

Example 1 – Alphabitia 

When we teach mathematics courses for elementary teachers, 

one of the topics that our students encounter in alternative bases 

for numeration.  A classic activity for investigating this topic is 

Tom Bassarear’s Alphabitia activity (Bassarear, 2005).  In this 

activity, the students play the role of archaeologists who “dig 

up” the ancient civilization of Alphabitia.  From some artifacts 

they determine that the Alphabitians used a numeration system 

that consisted of only the symbols A, B, C, D, and 0.  The task 

for the student archaeologists is to figure out exactly how the 

Alphabitians were able to represent numbers with only these 

symbols.  Of course, those readers with experience in base-

5 arithmetic will immediately see a way to do this, but our 

students almost always are initially baffled.  We spend about a 

week trying different systems until we eventually converge on 

the canonical base-5 positional place value system.  It is a long 

road for the students, but their satisfaction with their ability to 

construct something “brand new” is priceless. 

Equilibration

This activity is good on many fronts, but it is especially good 

since it quickly confronts the student with a novel situation that 

they have to mentally organize.  This cognitive organization 

process is called equilibration.  Equilibration is the process by 

which a learner attempts to organize a new piece of information 

by placing it into his or her current cognitive structure and 

modifying that cognitive structure accordingly.  Equilibration is 

closely related to the Gestalt concept of harmonious equilibrium, 

where consciousness tends to move away from “uncomfortable” 

stimuli toward a more “comfortable” state. Equilibration is 

central to Piaget’s constructivism, as evidenced by his claim 

that it is the organizing principle of cognitive development 

(Dubinsky & Lewin, 1986).  Piaget’s notion of equilibration 

is a cyclic process.  If an encountered piece of knowledge is 

novel in the sense that it doesn’t fit with the learner’s current 

cognitive framework, the learner’s cognitive system is now out 

of equilibrium.  This is called disequilibration.  

In the Alphabitia activity above, the students immediately 

undergo disequilibration when presented with the problem of 

reinventing a numeration system.  The purpose of spending a 

week on the activity is to allow time for the students to modify 

their existing cognitive structures to assimilate or accommodate 

this new material.

Example 2:  Alphabitia continued

Once the initial activity of Alphabitia is completed, 

the students are satisfied with their ability to construct new 

representations for numbers.  However, their knowledge is still 
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quite limited at this point, as evidenced when the extension 

to the activity is given.  In the extension, we ask the students 

to then find a way to add and subtract these new Alphabitian 

numerals.  Once again, the students are faced with a novel 

situation that they don’t yet know how to handle.  So, more 

time is spent with the students working in groups until they find 

a way to accommodate this new problem.

Reflective Abstraction

Notice that the students once again need to accommodate a 

new piece of information.  This time, however, their cognitive 

structures are working on a higher level than before.  This 

cognitive reconstruction is called reflective abstraction, as it 

involves reflecting the existing cognitive structures to a higher 

plane of thought and applying these structures to new stimuli.  

This is sometimes called “generalization” or “extension.”  A 

more extreme version of reflective abstraction can be found in 

the next example.

Example 3:  Alphabitia concluded

After two weeks of work on the Alphabitian numeration 

system, our students have gone from an unfamiliar numeration 

system to adding and 

subtracting in this new 

numeration system.  Of 

course, the students have 

actually just computed a 

group structure.  As such, 

the numeration system 

is no longer just a set of 

isolated processes; rather, 

it has become a complete 

system.  Once the students 

are able to view Alphabitia 

as a system, they have 

undergone the most radical 

cognitive reconstruction:  

encapsulation.  

Encapsulation

Encapsulation is the 

most interesting (and extreme) form of reflective abstraction 

(for mathematics education).  In encapsulation, implicit 

processes are coalesced into a whole unit, on which more 

actions and processes can be performed.  In other words, 

encapsulation is the conversion of a dynamic process to a static 

object (Dubinsky, 1991). 

Example:  An APOS Analysis of the Concept of Function

APOS Theory (Asiala, et al., 1996) is a psychological 

and educational theory of how students learn mathematics.  

The acronym APOS represents Action, Process, Object, & 

Schema; a cycle of conceptual levels that a mathematics 

student progresses through when building a set of (cognitive) 

organizing principles (a schema) about a particular topic.  We 

illustrate the APOS cycle by considering how students typically 

learn the concept of function.

When a student first learns about functions, the student 

is undoubtedly reminded that a function is a “machine” or 

formula that transforms a number that one “plugs in” to give 

a new number.  In other words, the function is something the 

student performs actions on to get an answer.  After the student 

does a few problems and begins to reflect on these actions, the 

student should begin to see the function as a complete process of 

actions; i.e., first, plug in the number, then simplify the algebraic 

expression to get the result.  This cognitive transformation is 

called interiorization.  See Figure 1 for an illustration.

It is worth noting at this point that the process conception 

of function is the conceptual level that most college algebra 

students attain after a one-semester course.  Once these students 

move on to calculus, however, they need to be able to take a 

derivative of a function.  A derivative is nothing more than a 

higher-level function that takes functions as inputs.  Since, at a 

conceptual level, a functional input needs to be an object, the 

concept of function that the calculus student possesses must go 

beyond the process conception of function; that is, the dynamic 

process of function must be encapsulated to become a static 

object.  When the student realizes that a function is an object, 

just like a number, the student can then try to extend number 

relationships to function relationships, which include being 

able to use a function as an input to another function like the 

derivative.

Example:  Calculus 

Another example of the APOS cycle is found in studying 

the Fundamental Theorem of Calculus.  For a beginning 

calculus student, an integral is often viewed as a process for 

computing the area underneath a curve; for example,
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Figure 1. Illustration of interiorization.
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x 1 to x 2.  This conception is at the action and process 

level.  A few weeks later, however, the student encounters the 

Fundamental Theorem of Calculus, of which a certain form 

deals with functions defined as integrals, such as the familiar

ln(x)
1

t
 dt

1

x

.

Students often have trouble with a representation of this 

type.  This is most likely because an integral such as the former 

one is computed using a process, whereas in the latter, the 

integral is part of the function definition.  What seems to be 

lacking is the encapsulation of this area process to an object 

that can have its parameters vary (Dubinsky, 1991).

 Recent research in mathematics education has indicated 

that successful mathematics performance occurs whenever 

students are able to encapsulate dynamic processes into static 

objects.  The ability to encapsulate processes into objects is 

generally considered to be very difficult (Sfard, 1991).  As 

an example, consider how students think about the equality 

0.99999....=1.  Many students believe this to actually not be 

true, although it is a well-known result that can be found in many 

mathematics textbooks.  The difficulty seems to be stemming 

from the students’ inability to encapsulate the dynamic process 

of “repeating the 9’s indefinitely” to a static object – the limit 

of the infinite process (Weller, et al., 2004).

CONSTRUCTIVISM AS A PARADIGM FOR RESEARCH 

IN MATHEMATICAL UNDERSTANDING

“Understanding” is a concept that is part of everyone’s 

folkloric knowledge about teaching, but it is also a term 

that tends to lack an operational definition.  Up until 1978, a 

student’s mathematical understanding was equated with the 

student’s (algorithmic) knowledge of mathematics (Meel, 

2003).  After 1978, understanding came to be realized as more 

organic than algorithmic knowledge, and several categories of 

understanding were proposed.  Richard Skemp (1976) was one 

of the first researchers of mathematics education who started 

to use knowledge from cognitive psychology to inform what 

was going on in the mathematics classroom.  While his theory 

of understanding was not purely constructivist (in the sense 

of Piaget), it did certainly contain elements of constructivism.  

For example, Skemp’s levels of understanding each contained 

a reflective subcategory, which was akin to Piaget’s reflective 

abstraction.

Following Skemp’s lead, many researchers in mathematics 

education have proposed theories of mathematical 

understanding that explicitly use ideas from constructivism.  

Examples include the concept image and concept definition 

model of Tall and Vinner (1981), the multiple representations 

model of Kaput (1989), and the growth of understanding 

model of Pirie and Kieren (1994).  See Meel (2003) for a more 

complete description of these models.  Constructivist models 

are not limited to undergraduate mathematics, however, as 

these models may inadvertently suggest.  Kamii (2000) has 

done extensive work with young children and their conceptions 

of arithmetic using a constructivist model.

PERSONAL PERSPECTIVES ON CONSTRUCTIVISM

We conclude by outlining two approaches to constructivism 

in the mathematics classroom:  one is a formal approach 

developed by Ed Dubinsky, and the other is our personal 

amalgamation of these techniques.

THE ACE TEACHING CYCLE

The ACE Teaching cycle was developed by Ed Dubinsky 

and is outlined very nicely in Asiala, et al. (1996).  The acronym 

ACE represents the three components of the cycle:  activities, 

class discussion, and exercises.  In the activity portion of the 

cycle, the students work in groups (often in the computer lab 

if appropriate) on tasks that are specially designed to help the 

students develop the correct cognitive constructions suggested 

by the constructivist model; that is, to help the students 

encapsulate processes into objects.  These activities may last 

for more than one class period.  At the end of the activity, the 

groups come together for a class discussion period, where the 

instructor leads discussion among the groups. The purpose of 

this discussion is to provide a medium for the students to begin 

the process of reflective abstraction.  The role of the instructor 

is to help the students successfully tie things together.  Finally, 

out-of-class exercises are assigned for the students to work on 

in teams.  The exercises are used to help the students reinforce 

their conceptual framework of the mathematics being studied.

This style of teaching does not lend itself well to a standard 

textbook, however.  One extreme solution has been proposed by 

Asiala, et al. (1996), whose solution is to write new textbooks 

that support this teaching cycle.  Realistically, this is not 

possible for most instructors, so each instructor must find his 

or her own technique for using a textbook to support this form 

of instruction.  Some find it necessary to abandon the textbook 

completely, where others supplement the textbook with other 

materials.  As an example, we will now present our method of 

constructivist teaching that has worked well for both of us.

OUR PERSONAL STYLE OF CONSTRUCTIVIST 

TEACHING

In our mathematics classrooms, the students are frequently 

presented with a problem situation to solve.  This involves 

finding rich mathematical tasks such as the Alphabitia activity.  

The instructor gives a brief introduction to the problem; then 

the students work in small groups.  The introduction is not to 

provide direction in the solving of the problem but to make 

sure all the students understand the nature of the problem.  

The instructor then observes the small groups, often asking 

questions to guide thinking, but not giving solutions.  As the 

instructor observes the group, she assesses which students are 

learning the material and which students are still struggling.  

She notes innovative student-invented strategies and solutions 

in order to facilitate the whole group discussion.  

Once the students have had the opportunity to solve the 

problem, individuals or groups are asked to present their 

strategies and solutions to the class.  It is through these 

discussions that those students who were still struggling can 

gain insight that they can apply as they try to solve the problem.  

Since the students often approach problems differently as 
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they are constructing their knowledge, several strategies 

are presented and each are discussed within the whole class.  

These discussions and reflections also provide the medium for 

the students to engage in reflective abstraction.  In addition 

to helping the students construct their own knowledge, this 

approach also allows the students to expand their problem-

solving abilities, to improve their ability to reason, to better 

their mathematical communication abilities, to create 

connections with prior knowledge within mathematics and in 

other contexts, and to flexibly move between representations 

of mathematical concepts.

Many people who are new to constructivism do not 

realize that the role of the teacher changes dramatically.  In 

our classrooms, the focus shifts from a one-way transmission 

of knowledge to a discourse in which the students interact with 

their peers and the new information in an attempt to ease a 

cognitive disturbance.  The teacher, no longer the sole source 

of new information, becomes a guide as the students work 

to construct their new knowledge.  It is the teacher’s job to 

structure the learning situations, to assess student progress, 

and modify as needed.  The teacher becomes a partner in the 

learning process.

In order to facilitate mathematical learning, the teacher 

must create tasks to engage the students in their learning 

process.  These tasks must be relevant to the students in order 

to maximize motivation. The tasks must also be worthwhile—

there must exist a reason to solve this problem.  Therefore most 

of the tasks are based on real-world situations.  These rich 

mathematical tasks must allow the students an opportunity to 

make and test conjectures.  The students need an opportunity 

to analyze their solution strategies as well as those of their 

classmates.  Many of these tasks consist of an opportunity to 

explore the concept concretely through hands-on activities, 

using materials such as manipulatives.  The activities lead the 

students from the concrete representations to the more abstract 

qualities of the concepts through questions requiring higher 

level thinking skills, mathematical reasoning, and multiple 

representations.  

This form of teaching places a greater load on the teacher.  

It is admittedly so much easier to instruct students by giving 

them the information rather than creating tasks and asking 

questions to guide them to create the knowledge on their own.  

However, the students do not retain material as well, nor do 

they have a solid understanding of the underpinnings of the 

content, if they are simply passively accepting information.  

The knowledge is not theirs, but the teacher’s.  They can work 

a problem they have seen before, but they are unable to apply 

their knowledge to new situations. If the students have struggled 

to assimilate the new knowledge into their content base, they 

are much more likely to be able to retrieve this information 

and to apply it in new and different ways because they have a 

greater understanding of the concept and its foundations since 

they built it themselves. 

One must note that it is very difficult to maintain a pure 

constructivist classroom.  Therefore, we have both adopted a 

blended approach.  This approach is predominantly guided by 

constructivism, but there are some more traditional aspects, 

such as homework and tests.  However, the homework and 

test questions are based on conceptual understanding of the 

topics rather than rote manipulations of symbols to arrive at an 

answer.  For instance, instead of having students find the slope 

given a linear equation, we will give them data which can be 

modeled by a linear function, ask them to find the function, 

then ask for the slope.  The main difference is that we then ask 

them to determine the meaning of the slope in the context of the 

problem.  The focus of the questions is on the idea of slope as a 

rate of change and how that affects a linear relationship rather 

than finding the slope of the line between two given points.  

We do lecture, but rarely, and never over 15 minutes. Our 

students are the ones at the board showing their strategies and 

solutions, answering their peers’ questions and justifying their 

solutions.  Those listening to the solution then evaluate the 

solution and the justification, asking questions when something 

is unclear.  We often use manipulatives or dynamic software to 

explore concepts and then discuss their observations.  These 

discussions lead to the more intricate subtleties of the concept 

far better than a straight lecture ever could.  Since the students 

are engaged and actively participating in the discourse, they 

are much more likely to construct and integrate these subtleties 

into their knowledge.

Through a classroom environment such as this, our students 

have learned that “Why?” is the most important question 

they can ask because it leads to greater understanding of any 

topic.  They are focused more on the “why” than the “how.”  

As the student answers the question of “why,” they can create 

the process to solve the problem, which answers the question 

“how,” because they understand the mathematical concepts 

underpinning the solution.

CONCLUSION

Research has indicated that successful learning involves 

actively rebuilding cognitive structures to accommodate 

new pieces of information as they are encountered.  This 

evolutionary, dynamic form of learning is called constructivism, 

and it has proven to be a personally successful theory to guide 

teaching for both of us.  While constructivism takes on many 

different forms, the essential core beliefs of constructivism in 

mathematics education can be summarized as follows:

1.  Mathematical knowledge is actively constructed through a 

process called reflective abstraction.

2.  Cognition is evolutionary: cognitive structures adapt to 

disturbances from novel stimuli in order to accommodate 

the stimuli in an ordered fashion.

3.  Constructivism as a teaching practice is difficult to maintain 

in its purest form, but it is a beneficial style of pedagogy 

that puts the student, rather than the teacher, at the center 

of the learning process.
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