A Bayesian framework for modeling individual differences in numerical cognition

Thomas J. Faulkenberry

Tarleton State University

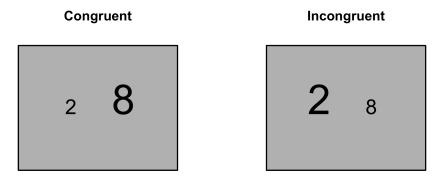
University of Alabama - August 31, 2021

Many classic phenomena in numerical cognition present as interference effects, where responses on trials with incongruent stimuli generally take longer, on average, than responses on trials with congruent stimuli.

Two examples:

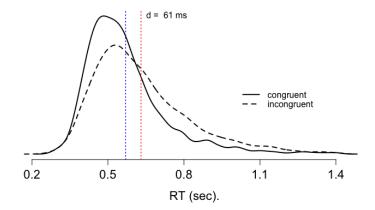
- Size congruity effect (Henik & Tzelgov, 1982)
- Unit-decade compatibility effect (Nuerk et al., 2001)

Task: choose the physically larger digit



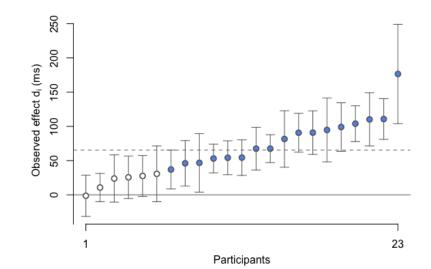
Size congruity effect

Typical result – mean RT larger for *incongruent trials*

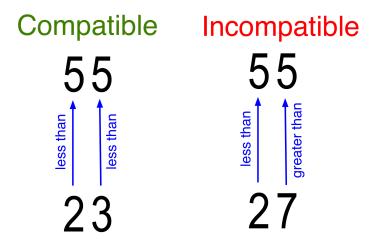


Size congruity effect

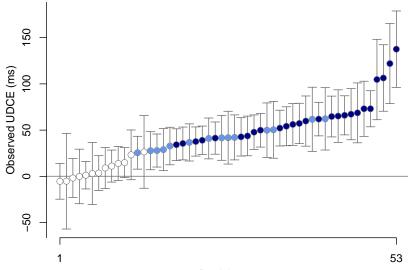
Individual effects?



Task - which two-digit number is larger?



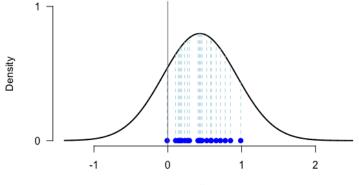
Unit-decade compatibility effect



Participants

Individual differences

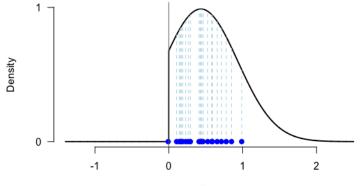
Suppose these observed effects d_i are drawn from population of *true* effects δ . What is the structure of this population?



Effect δ

Individual differences

Suppose these observed effects d_i are drawn from population of *true* effects δ . What is the structure of this population?



Does everybody exhibit the effect?

- if *yes*, then the effect is obligatory, resistant to strategic control, ...
- if no, then the effect is complex, malleable, ...

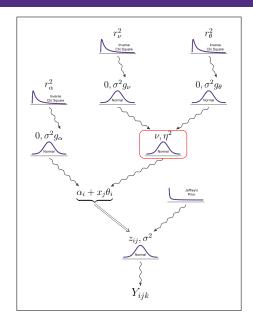
Importantly, both answers have downstream consequences for processing architecture of numerical cognition

Does everybody exhibit

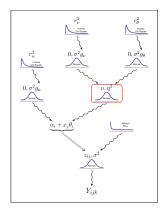
How to answer:

- build models of individual difference structures for the effect (e.g., Haaf & Rouder, 2017)
- adjudicate the models via Bayesian model comparison

Hierarchical structure



Hierarchical structure



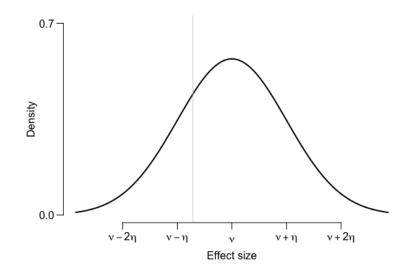
Basic idea (Haaf & Rouder, 2017):

- model RTs as a random-effects linear model with effect parameter θ_i (i = 1 ..., N)
- assume (as baseline) that θ_i is drawn from a normal distribution with mean ν and variance η^2
- define competing models by constraining effect parameter θ_i

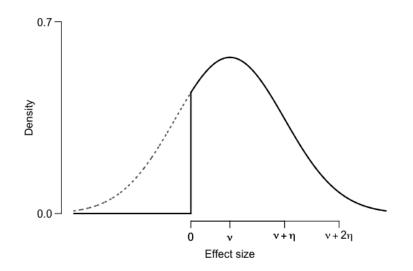
- 1. Unrestricted model, \mathcal{M}_u
- 2. Positive-effects model, \mathcal{M}_+
- 3. Common-effect model, \mathcal{M}_1
- 4. Null-effect model, \mathcal{M}_0

Unrestricted model

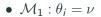
$\mathcal{M}_u: \theta_i \sim \mathsf{Normal}(\nu, \eta^2)$

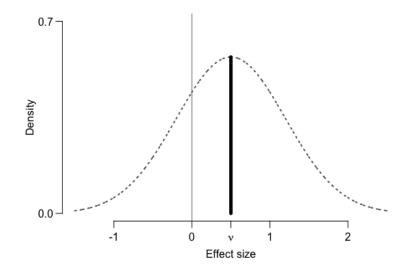


Positive-effects model

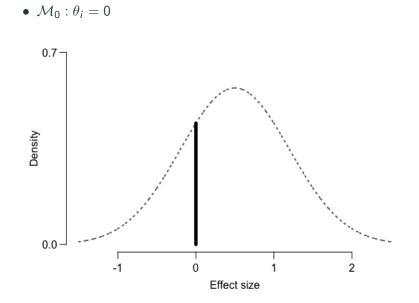


Common-effect model





Null-effect model



Bayesian model comparison

For any type of statistical inference, we fix a generative model

For any type of statistical inference, we fix a generative model

(think sampling distributions)

Given observed data, we then try to invert this model.

Given observed data, we then try to invert this model.

The frequentist accepts or rejects \mathcal{M} based on the likelihood of observing some data under a null hypothesis (i.e., the *p*-value)

Given observed data, we then try to invert this model.

The frequentist accepts or rejects \mathcal{M} based on the likelihood of observing some data under a null hypothesis (i.e., the *p*-value)

• bases decision criterion on controlling long-run error rates (i.e., α)

Given observed data, we then try to invert this model.

Given observed data, we then try to invert this model.

The Bayesian just directly asks: "What is the probability of this model \mathcal{M} , given that we've observed these data?"

Given observed data, we then try to invert this model.

The Bayesian just directly asks: "What is the probability of this model \mathcal{M} , given that we've observed these data?"

• "posterior belief in model $\mathcal{M}"$

Given observed data, we then try to invert this model.

The Bayesian just directly asks: "What is the probability of this model \mathcal{M} , given that we've observed these data?"

- "posterior belief in model \mathcal{M} "
- notation: $p(\mathcal{M} \mid data)$

Given observed data, we then try to invert this model.

The Bayesian just directly asks: "What is the probability of this model \mathcal{M} , given that we've observed these data?"

- "posterior belief in model \mathcal{M} "
- notation: $p(\mathcal{M} \mid data)$
- no accept/reject decision

 $p(\mathcal{M} \mid data)$ Posterior beliefs about model

 $p(\mathcal{M} \mid data) =$ $p(\mathcal{M})$ Posterior beliefs

Prior beliefs

about model

about model

$$\underbrace{p(\mathcal{M} \mid \mathsf{data})}_{\substack{\mathsf{Posterior beliefs}\\ \mathsf{about model}}} = \underbrace{p(\mathcal{M})}_{\substack{\mathsf{Prior beliefs}\\ \mathsf{about model}}} \times \underbrace{\frac{p(\mathsf{data} \mid \mathcal{M})}{p(\mathsf{data})}}_{\substack{\mathsf{predictive updating factor}}}$$

• Bayes' rule gives us a mathematical way to do this:

 $\frac{p(\mathcal{M}_1 \mid \mathsf{data})}{p(\mathcal{M}_2 \mid \mathsf{data})} =$

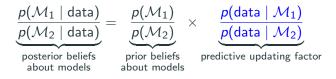
• Bayes' rule gives us a mathematical way to do this:

$$\frac{p(\mathcal{M}_1 \mid \mathsf{data})}{p(\mathcal{M}_2 \mid \mathsf{data})} = \frac{p(\mathcal{M}_1) \cdot \frac{p(\mathsf{data} \mid \mathcal{M}_1)}{p(\mathsf{data})}}{p(\mathcal{M}_2) \cdot \frac{p(\mathsf{data} \mid \mathcal{M}_2)}{p(\mathsf{data})}}$$

• Bayes' rule gives us a mathematical way to do this:

$$\frac{p(\mathcal{M}_1 \mid \mathsf{data})}{p(\mathcal{M}_2 \mid \mathsf{data})} = \frac{p(\mathcal{M}_1) \cdot \frac{p(\mathsf{data} \mid \mathcal{M}_1)}{p(\mathsf{data})}}{p(\mathcal{M}_2) \cdot \frac{p(\mathsf{data} \mid \mathcal{M}_2)}{p(\mathsf{data})}} \\ = \frac{p(\mathcal{M}_1) \cdot p(\mathsf{data} \mid \mathcal{M}_1)}{p(\mathcal{M}_2) \cdot p(\mathsf{data} \mid \mathcal{M}_2)}$$

• Bayes' rule gives us a mathematical way to do this:

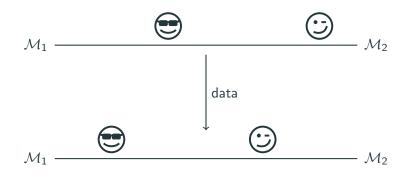


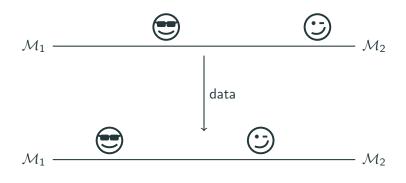
The predictive updating factor

$$B_{12} = rac{p(\mathsf{data} \mid \mathcal{M}_1)}{p(\mathsf{data} \mid \mathcal{M}_2)}$$

tells us how much better \mathcal{M}_1 predicts our observed data than \mathcal{M}_2 . This matic is called the **P**arses factor

This ratio is called the Bayes factor





Although O and O have different prior beliefs, they both shift their belief an equal amount toward \mathcal{M}_1 .

Example 1: suppose $B_{12} = 10$.

Interpretation: the observed data are 10 times more likely under \mathcal{M}_1 than $\mathcal{M}_2.$

Example 1: suppose $B_{12} = 10$.

Interpretation: the observed data are 10 times more likely under \mathcal{M}_1 than $\mathcal{M}_2.$

Example 2: suppose $B_{12} = \frac{1}{10}$. Then $B_{21} = 10$.

Interpretation: the observed data are 10 times more likely under \mathcal{M}_2 than $\mathcal{M}_1.$

Example 1: suppose $B_{12} = 10$.

Interpretation: the observed data are 10 times more likely under \mathcal{M}_1 than $\mathcal{M}_2.$

Example 2: suppose $B_{12} = \frac{1}{10}$. Then $B_{21} = 10$.

Interpretation: the observed data are 10 times more likely under \mathcal{M}_2 than $\mathcal{M}_1.$

Example 3: suppose $B_{12} = 1$.

Interpretation: the observed data are equally likely under \mathcal{M}_1 and $\mathcal{M}_2.$

Jeffreys (1961) proposed the following thresholds for evidence:

Bayes factor	Evidence		
1-3	anecdotal		
3-10	moderate		
10-30	strong		
30-100	very strong		
100-	extreme		

Full Bayesian inference requires specification of generative models for data. This is often difficult.

Also, we are typically trained to evaluate hypotheses about effects.

To reconcile the two, several teams (e.g., Rouder, Morey, Wagenmakers, et al.) have developed *default* Bayesian hypothesis tests. The key idea is that we define models on effect size.

• let
$$\delta = \frac{\mu}{\sigma}$$
 (think Cohen's *d*, but at the population level)

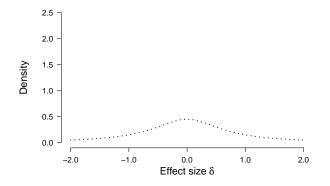
- let $\delta = \frac{\mu}{\sigma}$ (think Cohen's *d*, but at the population level)
- define competing models on δ :

- let $\delta = \frac{\mu}{\sigma}$ (think Cohen's *d*, but at the population level)
- define competing models on $\delta :$
 - $\mathcal{H}_0: \mu = 0$ (the effect size is 0)

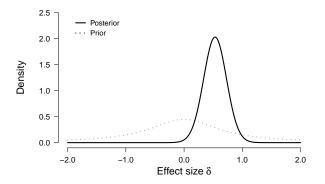
- let $\delta = \frac{\mu}{\sigma}$ (think Cohen's *d*, but at the population level)
- define competing models on δ :
 - $\mathcal{H}_0: \mu = 0$ (the effect size is 0)
 - $\mathcal{H}_1: \mu \neq 0$ (the effect size is not 0)

- let $\delta = \frac{\mu}{\sigma}$ (think Cohen's *d*, but at the population level)
- define competing models on δ :
 - $\mathcal{H}_0: \mu = 0$ (the effect size is 0)
 - $\mathcal{H}_1: \mu \neq 0$ (the effect size is not 0)
- use Bayes' rule to compute

$$p(\mathcal{H}_1 \mid \mathsf{data}) = p(\mathcal{H}_1) imes rac{p(\mathsf{data} \mid \mathcal{H}_1)}{p(\mathsf{data})}$$



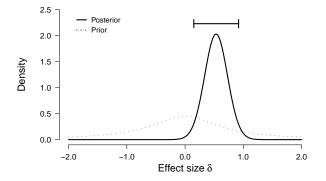
Start with prior belief about expected effect sizes δ .



Observing data updates our prior to a posterior.

median = 0.532

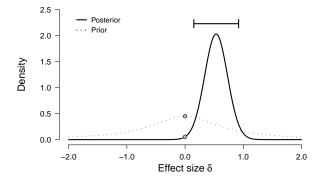
95% CI: [0.150, 0.919]



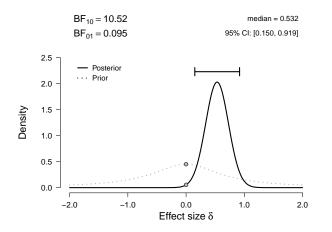
We can extract posterior estimates of δ

median = 0.532

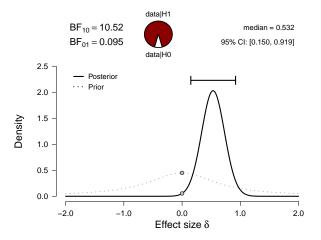
95% CI: [0.150, 0.919]

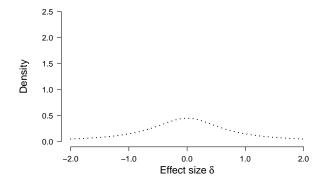


The Bayes factor is the ratio of the densities of $\delta = 0$ in the posterior and prior.

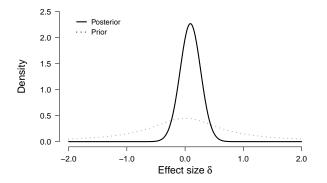


Observing data reduced our belief that $\delta = 0$ by a factor of 10.52





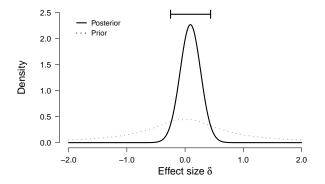
What happens if the null is supported instead?



Observing data updates our prior to a posterior.

median = 0.091

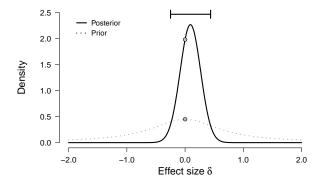
95% CI: [-0.250, 0.438]



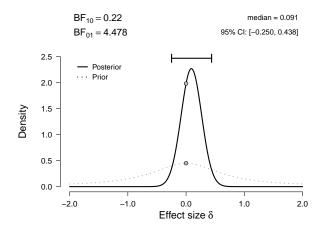
We can extract posterior estimates of δ

median = 0.091

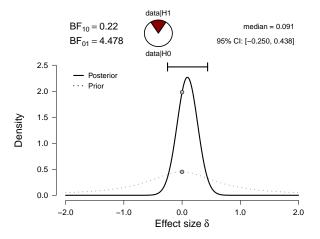
95% CI: [-0.250, 0.438]



The Bayes factor is the ratio of the densities of $\delta = 0$ in the posterior and prior.

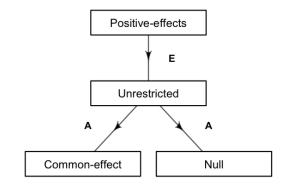


Observing data increased our belief that $\delta = 0$ by a factor of 4.478



Bayes factor computations

So
$$B_{ab} = \frac{p(\text{data} \mid \mathcal{M}_a)}{p(\text{data} \mid \mathcal{M}_b)}$$
. How do we compute this?



So
$$B_{ab} = \frac{p(\text{data} \mid \mathcal{M}_a)}{p(\text{data} \mid \mathcal{M}_b)}$$
. How do we compute this?
 $p(\text{data} \mid \mathcal{M}) = \int_{\boldsymbol{\xi} \in \Xi} p(\text{data} \mid \boldsymbol{\xi}, \mathcal{M}) p(\boldsymbol{\xi} \mid \mathcal{M}) d\boldsymbol{\xi}$

So
$$B_{ab} = \frac{p(\text{data} \mid \mathcal{M}_a)}{p(\text{data} \mid \mathcal{M}_b)}$$
. How do we compute this?
 $p(\text{data} \mid \mathcal{M}) = \int_{\boldsymbol{\xi} \in \Xi} p(\text{data} \mid \boldsymbol{\xi}, \mathcal{M}) p(\boldsymbol{\xi} \mid \mathcal{M}) d\boldsymbol{\xi}$

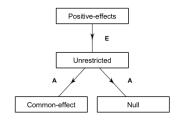
Problem: for our models \mathcal{M} , the parameter vectors $\boldsymbol{\xi}$ look like

$$\boldsymbol{\xi} = (\mu, \sigma^2, \nu, \alpha_1, \dots, \alpha_N, \theta_1, \dots, \theta_N, g_\alpha, g_\nu, g_\theta)$$

so the integral is carried out in \mathbb{R}^{2N+6} .

For N = 35, this would be a 76-dimensional integral!

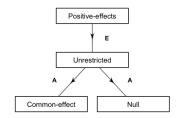
Bayes factor computations



A = analytic approach

- Zellner & Siow (1980); Rouder et al. (2012)
- place g-priors on individual intercepts and effect parameters
- everything *except* the *g*-parameters integrates symbolically
- g-parameters can be well approximated with MCMC sampling
- techniques coded into BayesFactor package in R

Bayes factor computations

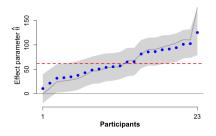


E = encompassing approach

- Klugkist et al. (2005)
- generalization of Savage-Dickey density ratio

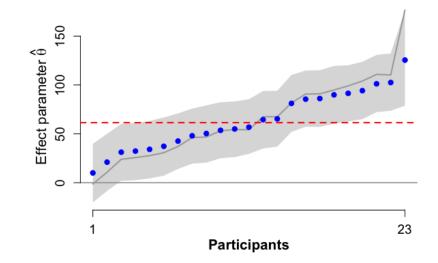
•
$$B_{+u} = \frac{P(\theta > 0 \mid \mathsf{data}, \mathcal{M}_u)}{P(\theta > 0 \mid \mathcal{M}_u)}$$

 probabilities computed as fraction of MCMC samples from unrestricted model that are **positive** for all individuals (both in the prior and posteriori)

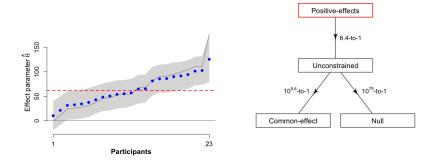


- Red line = estimated effect θ from \mathcal{M}_1
- Blue dots = individual effect estimates θ_i
- Gray line = estimates from mean differences *d_i*
- Gray area = 95% credible intervals

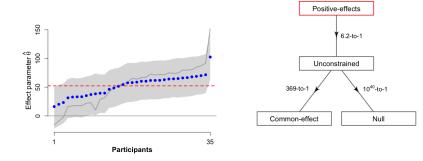
Results - size congruity effect



Results - size congruity effect



Results - another SCE dataset



Experiment 1:

r_{ν}	$r_{ heta}$	\mathcal{M}_{0}	\mathcal{M}_1	\mathcal{M}_+	\mathcal{M}_u
$\frac{1}{6}$ (50 ms)	$\frac{1}{10}$ (30 ms)	5.6e-77	4.2e-11	*	0.16
$\frac{1}{12}$ (25 ms)	$\frac{1}{20}$ (15 ms)	1.8e-76	7.7e-11	*	0.16
$\frac{1}{12}$ (25 ms)	$\frac{1}{5}$ (60 ms)	1.9e-77	8.1e-12	*	0.05
$\frac{1}{3}$ (100 ms)	$\frac{1}{20}$ (15 ms)	1.9e-76	1.9e-10	*	0.39
$\frac{1}{3}$ (100 ms)	$\frac{1}{5}$ (60 ms)	3.0e-77	3.1e-11	*	0.16

Note: Bayes factors computed against the "winning" model, denoted by *

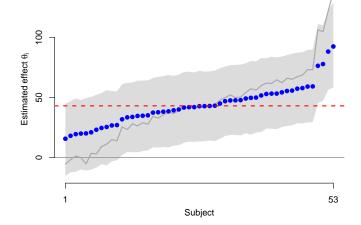
Experiment 2:

$r_{ u}$	$r_{ heta}$	\mathcal{M}_{0}	\mathcal{M}_1	\mathcal{M}_+	\mathcal{M}_{u}
$\frac{1}{6}$ (50 ms)	$\frac{1}{10}$ (30 ms)	4.3e-41	0.0004	*	0.17
$\frac{1}{12}$ (25 ms)	$\frac{1}{20}$ (15 ms)	1.2e-40	0.0007	*	0.16
$\frac{1}{12}$ (25 ms)	$\frac{1}{5}$ (60 ms)	2.6e-41	0.0002	*	0.06
$\frac{1}{3}$ (100 ms)	$\frac{1}{20}$ (15 ms)	1.4e-40	0.0017	*	0.42
$\frac{1}{3}$ (100 ms)	$\frac{1}{5}$ (60 ms)	4.1e-41	0.0005	*	0.19

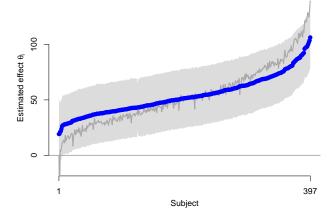
Note: Bayes factors computed against the "winning" model, denoted by *

Results - unit decade compatibility effect

Data from Connolly, Bahnmeuller, Bowman, Faulkenberry, & Cipora (in preparation)

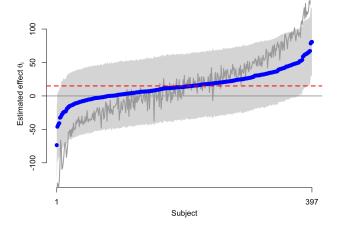


Results - numerical distance effect



Results - reverse distance effect

Data from Vogel, Faulkenberry, & Grabner (2021)



Does everybody ...

- if yes, then effect is obligatory, resistant to strategic control.
- if no, then effect is complex, malleable.

Importantly, both answers have downstream consequences for processing architecture of numerical cognition

• e.g., for SCE, what does this say about *early vs. late* interaction debate (e.g., Faulkenberry et al., 2016; Sobel et al., 2016; 2017; Faulkenberry, Vick, & Bowman, 2019)

Some other benefits:

- Bayes factors easy to interpret
- hierarchical structure removes trial noise from individual estimates
- common effect (CE) model provides important self-check:
 - if CE model is best, is our design adequate to capture individual differences
- Might be good approach to disentangle competing theories of mental arithmetic
 - Does everyone exhibit size-by-format interaction?
 - Does everyone reflect fast counting in small addition problems?

- slides available at https://tomfaulkenberry.github.io/
- Twitter: @tomfaulkenberry
- Email: faulkenberry@tarleton.edu