A Bayesian framework for modeling individual differences in numerical cognition

Thomas J. Faulkenberry
Tarleton State University

University of Alabama - August 31, 2021

Interference effects

Many classic phenomena in numerical cognition present as interference effects, where responses on trials with incongruent stimuli generally take longer, on average, than responses on trials with congruent stimuli.

Two examples:

- Size congruity effect (Henik \& Tzelgov, 1982)
- Unit-decade compatibility effect (Nuerk et al., 2001)

Size congruity effect

Task: choose the physically larger digit

Congruent

Incongruent

Size congruity effect

Typical result - mean RT larger for incongruent trials

Size congruity effect

Individual effects?

Unit-decade compatibility effect

Task - which two-digit number is larger?

Compatible
 Incompatible

 i 1
 55

 23
 27

Unit-decade compatibility effect

Individual effects?

Individual differences

Suppose these observed effects d_{i} are drawn from population of true effects δ. What is the structure of this population?

Individual differences

Suppose these observed effects d_{i} are drawn from population of true effects δ. What is the structure of this population?

A new question

Does everybody exhibit the effect?

- if yes, then the effect is obligatory, resistant to strategic control, ...
- if no, then the effect is complex, malleable,...

Importantly, both answers have downstream consequences for processing architecture of numerical cognition

A new question

Does everybody exhibit ...

How to answer:

- build models of individual difference structures for the effect (e.g., Haaf \& Rouder, 2017)
- adjudicate the models via Bayesian model comparison

Hierarchical structure

Hierarchical structure

Basic idea (Haaf \& Rouder, 2017):

- model RTs as a random-effects linear model with effect parameter θ_{i} $(i=1 \ldots, N)$
- assume (as baseline) that θ_{i} is drawn from a normal distribution with mean ν and variance η^{2}
- define competing models by constraining effect parameter θ_{i}

Four competing models

1. Unrestricted model, \mathcal{M}_{u}
2. Positive-effects model, \mathcal{M}_{+}
3. Common-effect model, \mathcal{M}_{1}
4. Null-effect model, \mathcal{M}_{0}

Unrestricted model

$\mathcal{M}_{u}: \theta_{i} \sim \operatorname{Normal}\left(\nu, \eta^{2}\right)$

Effect size

Positive-effects model

- $\mathcal{M}_{+}: \theta_{i} \sim \operatorname{Normal}_{+}\left(\nu, \eta^{2}\right)$

Common-effect model

- $\mathcal{M}_{1}: \theta_{i}=\nu$

Null-effect model

- $\mathcal{M}_{0}: \theta_{i}=0$

Effect size

Bayesian model comparison

The problem of inference

For any type of statistical inference, we fix a generative model

The problem of inference

For any type of statistical inference, we fix a generative model

(think sampling distributions)

The problem of inference

Given observed data, we then try to invert this model.

The problem of inference

Given observed data, we then try to invert this model.

The frequentist accepts or rejects \mathcal{M} based on the likelihood of observing some data under a null hypothesis (i.e., the p-value)

The problem of inference

Given observed data, we then try to invert this model.

The frequentist accepts or rejects \mathcal{M} based on the likelihood of observing some data under a null hypothesis (i.e., the p-value)

- bases decision criterion on controlling long-run error rates (i.e., α)

The problem of inference

Given observed data, we then try to invert this model.

The problem of inference

Given observed data, we then try to invert this model.

The Bayesian just directly asks: "What is the probability of this model \mathcal{M}, given that we've observed these data?"

The problem of inference

Given observed data, we then try to invert this model.

The Bayesian just directly asks: "What is the probability of this model \mathcal{M}, given that we've observed these data?"

- "posterior belief in model \mathcal{M}^{\prime}

The problem of inference

Given observed data, we then try to invert this model.

The Bayesian just directly asks: "What is the probability of this model \mathcal{M}, given that we've observed these data?"

- "posterior belief in model \mathcal{M}^{\prime}
- notation: $p(\mathcal{M} \mid$ data $)$

The problem of inference

Given observed data, we then try to invert this model.

The Bayesian just directly asks: "What is the probability of this model \mathcal{M}, given that we've observed these data?"

- "posterior belief in model \mathcal{M}^{\prime}
- notation: $p(\mathcal{M} \mid$ data $)$
- no accept/reject decision

Bayes' Rule

$$
\underbrace{p(\mathcal{M} \mid \text { data })}_{\begin{array}{c}
\text { Posterior beliefs } \\
\text { about model }
\end{array}}
$$

Bayes' Rule

$$
\underbrace{p(\mathcal{M} \mid \text { data })}_{\begin{array}{c}
\text { Posterior beliefs } \\
\text { about model }
\end{array}}=\underbrace{p(\mathcal{M})}_{\begin{array}{c}
\text { Prior beliefs } \\
\text { about model }
\end{array}}
$$

Bayes' Rule

$$
\underbrace{p(\mathcal{M} \mid \text { data })}_{\begin{array}{c}
\text { Posterior beliefs } \\
\text { about model }
\end{array}}=\underbrace{p(\mathcal{M})}_{\begin{array}{c}
\text { Prior beliefs } \\
\text { about model }
\end{array}} \times \underbrace{\frac{p(\text { data } \mid \mathcal{M})}{p(\text { data })}}_{\text {predictive updating factor }}
$$

Bayes' Rule

Natural action in science is to compare two models \mathcal{M}_{1} and \mathcal{M}_{2}.

- Bayes' rule gives us a mathematical way to do this:

$$
\frac{p\left(\mathcal{M}_{1} \mid \text { data }\right)}{p\left(\mathcal{M}_{2} \mid \text { data }\right)}=
$$

Bayes' Rule

Natural action in science is to compare two models \mathcal{M}_{1} and \mathcal{M}_{2}.

- Bayes' rule gives us a mathematical way to do this:

$$
\frac{p\left(\mathcal{M}_{1} \mid \text { data }\right)}{p\left(\mathcal{M}_{2} \mid \text { data }\right)}=\frac{p\left(\mathcal{M}_{1}\right) \cdot \frac{p\left(\text { data| } \mid \mathcal{M}_{1}\right)}{p(\text { data })}}{p\left(\mathcal{M}_{2}\right) \cdot \frac{p\left(\text { data } \mid \mathcal{M}_{2}\right)}{p(\text { data })}}
$$

Bayes' Rule

Natural action in science is to compare two models \mathcal{M}_{1} and \mathcal{M}_{2}.

- Bayes' rule gives us a mathematical way to do this:

$$
\begin{aligned}
\frac{p\left(\mathcal{M}_{1} \mid \text { data }\right)}{p\left(\mathcal{M}_{2} \mid \text { data }\right)} & =\frac{p\left(\mathcal{M}_{1}\right) \cdot \frac{p\left(\text { data } \mid \mathcal{M}_{1}\right)}{p(\text { data })}}{p\left(\mathcal{M}_{2}\right) \cdot \frac{p\left(\text { data } \mid \mathcal{M}_{2}\right)}{p(\text { data })}} \\
& =\frac{p\left(\mathcal{M}_{1}\right) \cdot p\left(\text { data } \mid \mathcal{M}_{1}\right)}{p\left(\mathcal{M}_{2}\right) \cdot p\left(\text { data } \mid \mathcal{M}_{2}\right)}
\end{aligned}
$$

Bayes' Rule

Natural action in science is to compare two models \mathcal{M}_{1} and \mathcal{M}_{2}.

- Bayes' rule gives us a mathematical way to do this:

$$
\underbrace{\frac{p\left(\mathcal{M}_{1} \mid \text { data }\right)}{p\left(\mathcal{M}_{2} \mid \text { data }\right)}}_{\begin{array}{c}
\text { posterior beliefs } \\
\text { about models }
\end{array}}=\underbrace{\frac{p\left(\mathcal{M}_{1}\right)}{p\left(\mathcal{M}_{2}\right)}}_{\begin{array}{c}
\text { prior beliefs } \\
\text { about models }
\end{array}} \times \underbrace{\frac{p\left(\text { data } \mid \mathcal{M}_{1}\right)}{p\left(\text { data } \mid \mathcal{M}_{2}\right)}}_{\text {predictive updating factor }}
$$

Bayes factor

The predictive updating factor

$$
B_{12}=\frac{p\left(\text { data } \mid \mathcal{M}_{1}\right)}{p\left(\text { data } \mid \mathcal{M}_{2}\right)}
$$

tells us how much better \mathcal{M}_{1} predicts our observed data than \mathcal{M}_{2}.
This ratio is called the Bayes factor

Bayes factors

Bayes factors

Bayes factors

Although Θ and \odot have different prior beliefs, they both shift their belief an equal amount toward \mathcal{M}_{1}.

Interpreting Bayes factors

Example 1: suppose $B_{12}=10$.

Interpretation: the observed data are 10 times more likely under \mathcal{M}_{1} than \mathcal{M}_{2}.

Interpreting Bayes factors

Example 1: suppose $B_{12}=10$.

Interpretation: the observed data are 10 times more likely under \mathcal{M}_{1} than \mathcal{M}_{2}.

Example 2: suppose $B_{12}=\frac{1}{10}$. Then $B_{21}=10$.
Interpretation: the observed data are 10 times more likely under \mathcal{M}_{2} than \mathcal{M}_{1}.

Interpreting Bayes factors

Example 1: suppose $B_{12}=10$.

Interpretation: the observed data are 10 times more likely under \mathcal{M}_{1} than \mathcal{M}_{2}.

Example 2: suppose $B_{12}=\frac{1}{10}$. Then $B_{21}=10$.
Interpretation: the observed data are 10 times more likely under \mathcal{M}_{2} than \mathcal{M}_{1}.

Example 3: suppose $B_{12}=1$.
Interpretation: the observed data are equally likely under \mathcal{M}_{1} and \mathcal{M}_{2}.

Bayes factors

Jeffreys (1961) proposed the following thresholds for evidence:

Bayes factor	Evidence
$1-3$	anecdotal
$3-10$	moderate
$10-30$	strong
$30-100$	very strong
$100-$	extreme

Models \leftrightarrow hypotheses

Full Bayesian inference requires specification of generative models for data. This is often difficult.

Also, we are typically trained to evaluate hypotheses about effects.

To reconcile the two, several teams (e.g., Rouder, Morey, Wagenmakers, et al.) have developed default Bayesian hypothesis tests. The key idea is that we define models on effect size.

Models \leftrightarrow hypotheses

Specifying models on effect size

Models \leftrightarrow hypotheses

Specifying models on effect size

- let $\delta=\frac{\mu}{\sigma}$ (think Cohen's d, but at the population level)

Models \leftrightarrow hypotheses

Specifying models on effect size

- let $\delta=\frac{\mu}{\sigma}$ (think Cohen's d, but at the population level)
- define competing models on δ :

Models \leftrightarrow hypotheses

Specifying models on effect size

- let $\delta=\frac{\mu}{\sigma}$ (think Cohen's d, but at the population level)
- define competing models on δ :
- $\mathcal{H}_{0}: \mu=0$ (the effect size is 0)

Models \leftrightarrow hypotheses

Specifying models on effect size

- let $\delta=\frac{\mu}{\sigma}$ (think Cohen's d, but at the population level)
- define competing models on δ :
- $\mathcal{H}_{0}: \mu=0$ (the effect size is 0)
- $\mathcal{H}_{1}: \mu \neq 0$ (the effect size is not 0)

Models \leftrightarrow hypotheses

Specifying models on effect size

- let $\delta=\frac{\mu}{\sigma}$ (think Cohen's d, but at the population level)
- define competing models on δ :
- $\mathcal{H}_{0}: \mu=0$ (the effect size is 0)
- $\mathcal{H}_{1}: \mu \neq 0$ (the effect size is not 0)
- use Bayes' rule to compute

$$
p\left(\mathcal{H}_{1} \mid \text { data }\right)=p\left(\mathcal{H}_{1}\right) \times \frac{p\left(\text { data } \mid \mathcal{H}_{1}\right)}{p(\text { data })}
$$

Generic default Bayesian test

Start with prior belief about expected effect sizes δ.

Generic default Bayesian test

Observing data updates our prior to a posterior.

Generic default Bayesian test

We can extract posterior estimates of δ

Generic default Bayesian test

> median $=0.532$
> 95% CI: $[0.150,0.919]$

The Bayes factor is the ratio of the densities of $\delta=0$ in the posterior and prior.

Generic default Bayesian test

$$
\begin{aligned}
& \mathrm{BF}_{10}=10.52 \\
& \mathrm{BF}_{01}=0.095
\end{aligned}
$$

$$
\text { median }=0.532
$$

$95 \% \mathrm{Cl}:$ [0.150, 0.919]

Observing data reduced our belief that $\delta=0$ by a factor of 10.52

Generic default Bayesian test

Generic default Bayesian test

What happens if the null is supported instead?

Generic default Bayesian test

Observing data updates our prior to a posterior.

Generic default Bayesian test

We can extract posterior estimates of δ

Generic default Bayesian test

The Bayes factor is the ratio of the densities of $\delta=0$ in the posterior and prior.

Generic default Bayesian test

$$
\begin{aligned}
& \mathrm{BF}_{10}=0.22 \\
& \mathrm{BF}_{01}=4.478
\end{aligned}
$$

$$
\text { median }=0.091
$$

$95 \% \mathrm{Cl}:[-0.250,0.438]$

Observing data increased our belief that $\delta=0$ by a factor of 4.478

Generic default Bayesian test

Bayes factor computations

So $B_{a b}=\frac{p\left(\text { data } \mid \mathcal{M}_{a}\right)}{p\left(\text { data } \mid \mathcal{M}_{b}\right)}$. How do we compute this?

Bayes factor computations

So $B_{a b}=\frac{p\left(\text { data } \mid \mathcal{M}_{a}\right)}{p\left(\text { data } \mid \mathcal{M}_{b}\right)}$. How do we compute this?

$$
p(\text { data } \mid \mathcal{M})=\int_{\boldsymbol{\xi} \in \equiv} p(\text { data } \mid \boldsymbol{\xi}, \mathcal{M}) p(\boldsymbol{\xi} \mid \mathcal{M}) d \boldsymbol{\xi}
$$

Bayes factor computations

So $B_{a b}=\frac{p\left(\text { data } \mid \mathcal{M}_{a}\right)}{p\left(\text { data } \mid \mathcal{M}_{b}\right)}$. How do we compute this?

$$
p(\text { data } \mid \mathcal{M})=\int_{\boldsymbol{\xi} \in \equiv} p(\text { data } \mid \boldsymbol{\xi}, \mathcal{M}) p(\boldsymbol{\xi} \mid \mathcal{M}) d \boldsymbol{\xi}
$$

Problem: for our models \mathcal{M}, the parameter vectors $\boldsymbol{\xi}$ look like

$$
\boldsymbol{\xi}=\left(\mu, \sigma^{2}, \nu, \alpha_{1}, \ldots, \alpha_{N}, \theta_{1}, \ldots, \theta_{N}, g_{\alpha}, g_{\nu}, g_{\theta}\right)
$$

so the integral is carried out in $\mathbb{R}^{2 N+6}$.
For $N=35$, this would be a 76 -dimensional integral!

Bayes factor computations

$A=$ analytic approach

- Zellner \& Siow (1980); Rouder et al. (2012)
- place g-priors on individual intercepts and effect parameters
- everything except the g-parameters integrates symbolically
- g-parameters can be well approximated with MCMC sampling
- techniques coded into BayesFactor package in R

Bayes factor computations

$$
E=\text { encompassing approach }
$$

- Klugkist et al. (2005)
- generalization of Savage-Dickey density ratio
- $B_{+u}=\frac{P\left(\boldsymbol{\theta}>0 \mid \operatorname{data}, \mathcal{M}_{u}\right)}{P\left(\boldsymbol{\theta}>0 \mid \mathcal{M}_{u}\right)}$
- probabilities computed as fraction of MCMC samples from unrestricted model that are positive for all individuals (both in the prior and posteriori)

Results - size congruity effect

- Red line = estimated effect θ from \mathcal{M}_{1}
- Blue dots = individual effect estimates θ_{i}
- Gray line $=$ estimates from mean differences d_{i}
- Gray area $=95 \%$ credible intervals

Results - size congruity effect

Results - size congruity effect

Results - another SCE dataset

Sensitivity to prior specifications

Experiment 1:

r_{ν}	r_{θ}	\mathcal{M}_{0}	\mathcal{M}_{1}	\mathcal{M}_{+}	\mathcal{M}_{u}
$\frac{1}{6}(50 \mathrm{~ms})$	$\frac{1}{10}(30 \mathrm{~ms})$	$5.6 \mathrm{e}-77$	$4.2 \mathrm{e}-11$	$*$	0.16
$\frac{1}{12}(25 \mathrm{~ms})$	$\frac{1}{20}(15 \mathrm{~ms})$	$1.8 \mathrm{e}-76$	$7.7 \mathrm{e}-11$	$*$	0.16
$\frac{1}{12}(25 \mathrm{~ms})$	$\frac{1}{5}(60 \mathrm{~ms})$	$1.9 \mathrm{e}-77$	$8.1 \mathrm{e}-12$	$*$	0.05
$\frac{1}{3}(100 \mathrm{~ms})$	$\frac{1}{20}(15 \mathrm{~ms})$	$1.9 \mathrm{e}-76$	$1.9 \mathrm{e}-10$	$*$	0.39
$\frac{1}{3}(100 \mathrm{~ms})$	$\frac{1}{5}(60 \mathrm{~ms})$	$3.0 \mathrm{e}-77$	$3.1 \mathrm{e}-11$	$*$	0.16

Note: Bayes factors computed against the "winning" model, denoted by *

Sensitivity to prior specifications

Experiment 2:

r_{ν}	r_{θ}	\mathcal{M}_{0}	\mathcal{M}_{1}	\mathcal{M}_{+}	\mathcal{M}_{u}
$\frac{1}{6}(50 \mathrm{~ms})$	$\frac{1}{10}(30 \mathrm{~ms})$	$4.3 \mathrm{e}-41$	0.0004	$*$	0.17
$\frac{1}{12}(25 \mathrm{~ms})$	$\frac{1}{20}(15 \mathrm{~ms})$	$1.2 \mathrm{e}-40$	0.0007	$*$	0.16
$\frac{1}{12}(25 \mathrm{~ms})$	$\frac{1}{5}(60 \mathrm{~ms})$	$2.6 \mathrm{e}-41$	0.0002	$*$	0.06
$\frac{1}{3}(100 \mathrm{~ms})$	$\frac{1}{20}(15 \mathrm{~ms})$	$1.4 \mathrm{e}-40$	0.0017	$*$	0.42
$\frac{1}{3}(100 \mathrm{~ms})$	$\frac{1}{5}(60 \mathrm{~ms})$	$4.1 \mathrm{e}-41$	0.0005	$*$	0.19

Note: Bayes factors computed against the "winning" model, denoted by *

Results - unit decade compatibility effect

Data from Connolly, Bahnmeuller, Bowman, Faulkenberry, \& Cipora (in preparation)

Results - numerical distance effect

Data from Vogel, Faulkenberry, \& Grabner (2021)

Results - reverse distance effect

Data from Vogel, Faulkenberry, \& Grabner (2021)

Summary points

Does everybody ...

- if yes, then effect is obligatory, resistant to strategic control.
- if no, then effect is complex, malleable.

Importantly, both answers have downstream consequences for processing architecture of numerical cognition

- e.g., for SCE, what does this say about early vs. late interaction debate (e.g., Faulkenberry et al., 2016; Sobel et al., 2016; 2017; Faulkenberry, Vick, \& Bowman, 2019)

Summary points

Some other benefits:

- Bayes factors easy to interpret
- hierarchical structure removes trial noise from individual estimates
- common effect (CE) model provides important self-check:
- if CE model is best, is our design adequate to capture individual differences
- Might be good approach to disentangle competing theories of mental arithmetic
- Does everyone exhibit size-by-format interaction?
- Does everyone reflect fast counting in small addition problems?

Thank you!

- slides available at https://tomfaulkenberry.github.io/
- Twitter: ©tomfaulkenberry
- Email: faulkenberry@tarleton.edu

