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Interference effects

Many classic phenomena in numerical cognition present as

interference effects, where responses on trials with incongruent

stimuli generally take longer, on average, than responses on trials

with congruent stimuli.

Two examples:

• Size congruity effect (Henik & Tzelgov, 1982)

• Unit-decade compatibility effect (Nuerk et al., 2001)
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Size congruity effect

Task: choose the physically larger digit
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Size congruity effect

Typical result – mean RT larger for incongruent trials
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Size congruity effect

Individual effects?
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Unit-decade compatibility effect

Task – which two-digit number is larger?
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Unit-decade compatibility effect

Individual effects?

Participants

O
bs

er
ve

d 
U

D
C

E
 (

m
s)

1 53

−
50

0
50

10
0

15
0

6



Individual differences

Suppose these observed effects di are drawn from population of

true effects δ. What is the structure of this population?
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A new question

Does everybody exhibit the effect?

• if yes, then the effect is obligatory, resistant to strategic

control, . . .

• if no, then the effect is complex, malleable, . . .

Importantly, both answers have downstream consequences for

processing architecture of numerical cognition
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A new question

Does everybody exhibit . . .

How to answer:

• build models of individual difference structures for the effect

(e.g., Haaf & Rouder, 2017)

• adjudicate the models via Bayesian model comparison
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Hierarchical structure

Yijk

zij, σ
2

αi + xjθi︸ ︷︷ ︸

0, σ2gα ν, η2

r2
α 0, σ2gν 0, σ2gθ

r2
ν r2

θ
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Hierarchical structure

Yijk

zij, σ
2

αi + xjθi︸ ︷︷ ︸

0, σ2gα ν, η2

r2
α 0, σ2gν 0, σ2gθ

r2
ν r2

θ Basic idea (Haaf & Rouder, 2017):

• model RTs as a random-effects linear

model with effect parameter θi
(i = 1 . . . ,N)

• assume (as baseline) that θi is drawn

from a normal distribution with mean

ν and variance η2

• define competing models by

constraining effect parameter θi
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Four competing models

1. Unrestricted model, Mu

2. Positive-effects model, M+

3. Common-effect model, M1

4. Null-effect model, M0
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Unrestricted model

Mu : θi ∼ Normal(ν, η2)
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Positive-effects model

• M+ : θi ∼ Normal+(ν, η2)
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Common-effect model

• M1 : θi = ν
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Null-effect model

• M0 : θi = 0
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Bayesian model comparison
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The problem of inference

For any type of statistical inference, we fix a generative model

Model M
of nature

predicted

data

(think sampling distributions)
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The problem of inference

Given observed data, we then try to invert this model.

Model M
of nature

observed

data

The frequentist accepts or rejects M based on the likelihood of

observing some data under a null hypothesis (i.e., the p-value)

• bases decision criterion on controlling long-run error rates

(i.e., α)
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The problem of inference

Given observed data, we then try to invert this model.

Model M
of nature

observed

data

The Bayesian just directly asks: “What is the probability of this

model M, given that we’ve observed these data?”

• “posterior belief in model M”

• notation: p(M | data)

• no accept/reject decision
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Bayes’ Rule

p(M | data)︸ ︷︷ ︸
Posterior beliefs

about model

= p(M)︸ ︷︷ ︸
Prior beliefs
about model

× p(data | M)

p(data)︸ ︷︷ ︸
predictive updating factor
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Bayes’ Rule

Natural action in science is to compare two models M1 and M2.

• Bayes’ rule gives us a mathematical way to do this:

p(M1 | data)

p(M2 | data)
=

p(M1) · p(data|M1)
p(data)

p(M2) · p(data|M2)
p(data)

=
p(M1) · p(data | M1)

p(M2) · p(data | M2)
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Bayes factor

The predictive updating factor

B12 =
p(data | M1)

p(data | M2)

tells us how much better M1 predicts our observed data than M2.

This ratio is called the Bayes factor
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Bayes factors

M1 M2

M1 M2

data

Although and have different prior beliefs, they both shift

their belief an equal amount toward M1.
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Interpreting Bayes factors

Example 1: suppose B12 = 10.

Interpretation: the observed data are 10 times more likely under

M1 than M2.

Example 2: suppose B12 = 1
10 . Then B21 = 10.

Interpretation: the observed data are 10 times more likely under

M2 than M1.

Example 3: suppose B12 = 1.

Interpretation: the observed data are equally likely under M1 and

M2.
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Bayes factors

Jeffreys (1961) proposed the following thresholds for evidence:

Bayes factor Evidence

1-3 anecdotal

3-10 moderate

10-30 strong

30-100 very strong

100- extreme
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Models ↔ hypotheses

Full Bayesian inference requires specification of generative models

for data. This is often difficult.

Also, we are typically trained to evaluate hypotheses about effects.

To reconcile the two, several teams (e.g., Rouder, Morey,

Wagenmakers, et al.) have developed default Bayesian hypothesis

tests. The key idea is that we define models on effect size.
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Models ↔ hypotheses

Specifying models on effect size

• let δ =
µ

σ
(think Cohen’s d , but at the population level)

• define competing models on δ:

• H0 : µ = 0 (the effect size is 0)

• H1 : µ 6= 0 (the effect size is not 0)

• use Bayes’ rule to compute

p(H1 | data) = p(H1)× p(data | H1)

p(data)
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Generic default Bayesian test
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Start with prior belief about expected effect sizes δ.
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Generic default Bayesian test
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Observing data updates our prior to a posterior.
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Generic default Bayesian test
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We can extract posterior estimates of δ
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Generic default Bayesian test
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What happens if the null is supported instead?
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Bayes factor computations

So Bab =
p(data | Ma)

p(data | Mb)
. How do we compute this?
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So Bab =
p(data | Ma)

p(data | Mb)
. How do we compute this?

p(data | M) =

∫

ξ∈Ξ
p(data | ξ,M)p(ξ | M)dξ

Problem: for our models M, the parameter vectors ξ look like

ξ = (µ, σ2, ν, α1, . . . , αN , θ1, . . . , θN , gα, gν , gθ)

so the integral is carried out in R2N+6.

For N = 35, this would be a 76-dimensional integral!
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Bayes factor computations

A = analytic approach

• Zellner & Siow (1980); Rouder

et al. (2012)

• place g -priors on individual

intercepts and effect

parameters

• everything except the

g -parameters integrates

symbolically

• g -parameters can be well

approximated with MCMC

sampling

• techniques coded into

BayesFactor package in R
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Bayes factor computations

E = encompassing approach

• Klugkist et al. (2005)

• generalization of

Savage-Dickey density ratio

• B+u =
P(θ > 0 | data,Mu)

P(θ > 0 | Mu)

• probabilities computed as

fraction of MCMC samples

from unrestricted model that

are positive for all individuals

(both in the prior and

posteriori)
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Results - size congruity effect

• Red line = estimated effect

θ from M1

• Blue dots = individual

effect estimates θi

• Gray line = estimates from

mean differences di

• Gray area = 95% credible

intervals
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Results - size congruity effect
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Results - size congruity effect
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Results - another SCE dataset
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Sensitivity to prior specifications

Experiment 1:

rν rθ M0 M1 M+ Mu

1
6 (50 ms) 1

10 (30 ms) 5.6e-77 4.2e-11 * 0.16

1
12 (25 ms) 1

20 (15 ms) 1.8e-76 7.7e-11 * 0.16

1
12 (25 ms) 1

5 (60 ms) 1.9e-77 8.1e-12 * 0.05

1
3 (100 ms) 1

20 (15 ms) 1.9e-76 1.9e-10 * 0.39

1
3 (100 ms) 1

5 (60 ms) 3.0e-77 3.1e-11 * 0.16

Note: Bayes factors computed against the “winning” model, denoted by *
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Sensitivity to prior specifications

Experiment 2:

rν rθ M0 M1 M+ Mu

1
6 (50 ms) 1

10 (30 ms) 4.3e-41 0.0004 * 0.17

1
12 (25 ms) 1

20 (15 ms) 1.2e-40 0.0007 * 0.16

1
12 (25 ms) 1

5 (60 ms) 2.6e-41 0.0002 * 0.06

1
3 (100 ms) 1

20 (15 ms) 1.4e-40 0.0017 * 0.42

1
3 (100 ms) 1

5 (60 ms) 4.1e-41 0.0005 * 0.19

Note: Bayes factors computed against the “winning” model, denoted by *
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Results - unit decade compatibility effect

Data from Connolly, Bahnmeuller, Bowman, Faulkenberry, &

Cipora (in preparation)
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Results - numerical distance effect

Data from Vogel, Faulkenberry, & Grabner (2021)
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Results - reverse distance effect

Data from Vogel, Faulkenberry, & Grabner (2021)
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Summary points

Does everybody . . .

• if yes, then effect is obligatory, resistant to strategic control.

• if no, then effect is complex, malleable.

Importantly, both answers have downstream consequences for

processing architecture of numerical cognition

• e.g., for SCE, what does this say about early vs. late

interaction debate (e.g., Faulkenberry et al., 2016; Sobel et

al., 2016; 2017; Faulkenberry, Vick, & Bowman, 2019)

56



Summary points

Some other benefits:

• Bayes factors easy to interpret

• hierarchical structure removes trial noise from individual

estimates

• common effect (CE) model provides important self-check:

• if CE model is best, is our design adequate to capture

individual differences

• Might be good approach to disentangle competing theories of
mental arithmetic

• Does everyone exhibit size-by-format interaction?

• Does everyone reflect fast counting in small addition problems?
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Thank you!

• slides available at https://tomfaulkenberry.github.io/

• Twitter: @tomfaulkenberry

• Email: faulkenberry@tarleton.edu
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