Obtaining closed form Bayes factors from summary statistics in common experimental designs

Thomas J. Faulkenberry

Tarleton State University

The goal of this talk is to describe some methods for evaluating evidential value of data in analysis of variance models.

By *evidential value*, I mean the factor by which the prior odds is updated after observing data:

Kass and Raftery (1995) called this predictive updating factor the Bayes factor

Motivating example: consider test scores from students in three instructional treatments:

Treatment 1	Treatment 2	Treatment 3
2	5	8
3	9	6
8	10	12
6	13	11
5	8	11
6	9	12
M = 5	M = 9	M = 10

Typical question – are there differences among these condition means?

Classical approach - analysis of variance (ANOVA)

- model $Y_{ij} = \mu + \alpha_j + \varepsilon_{ij}$, where $\varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$
- assume "null hypothesis" $\mathcal{H}_0: \alpha_j = 0$
- compute probability of observing data Y_{ij} under \mathcal{H}_0
- if data is *rare* under \mathcal{H}_0 , reject \mathcal{H}_0
- index "rareness" by computing F (a ratio of between-group and withingroup variances)

ANOVA computations

source	SS	$d\!f$	MS	F
between treatments	84	2	42	7.16
within treatments	88	15	5.87	
total	172	17		

Since our data Y_{ij} is rare under \mathcal{H}_0 , we reject \mathcal{H}_0 as an implausible model restriction.

This ignores predictive adequacy of \mathcal{H}_1 .

The Bayes factor

$$B_{10} = \frac{p(\mathcal{D} \mid \mathcal{H}_1)}{p(\mathcal{D} \mid \mathcal{H}_0)}$$

tells us how much better \mathcal{H}_1 predicts our observed data compared to \mathcal{H}_0 .

Example: suppose $B_{12} = 5$. This means that the observed data are 5 times more likely under \mathcal{H}_1 than \mathcal{H}_0 .

Problem – computing Bayes factors is hard!

$$B_{10} = \frac{p(\mathcal{D} \mid \mathcal{H}_1)}{p(\mathcal{D} \mid \mathcal{H}_0)}$$
$$= \frac{\int f(\mathcal{D} \mid \theta_1, \mathcal{H}_1) \pi(\theta_1 \mid \mathcal{H}_1) d\theta_1}{\int f(\mathcal{D} \mid \theta_0, \mathcal{H}_0) \pi(\theta_0 \mid \mathcal{H}_0) d\theta_0}$$

Today, I'll describe two approaches to making this computation easier

1. BIC approximation (Raftery, 1995; Wagenmakers, 2007; Masson, 2011)

Basic idea – if we construct 2nd order Taylor approximation of log-marginal likelihood of each \mathcal{H}_i , we get

$$BF_{01} \approx \exp\left(\frac{\operatorname{BIC}(\mathcal{H}_1) - \operatorname{BIC}(\mathcal{H}_0)}{2}\right),$$

where

$$\operatorname{BIC}(\mathcal{H}_i) = n \ln\left(\frac{SSR}{SST}\right) + k \ln n.$$

In 2018¹, I derived a simple formula that computes this BIC Bayes factor using only the ANOVA summary statistics:

$$BF_{01} \approx \sqrt{n^x \left(1 + \frac{Fx}{y}\right)^{-n}},$$

where

- F is the observed F-ratio
- x, y are the numerator/denominator df, respectively
- *n* is the total number of observations.

¹Faulkenberry, T.J. (2018). Computing Bayes factors to measure evidence from experiments: An extension of the BIC approximation. *Biometrical Letters*, *55*, 31-43

Using the summary statistics from the ANOVA (F = 7.16, x = 2, y = 15, and n = 18), we get

$$BF_{01} \approx \sqrt{n^{x} \left(1 + \frac{Fx}{y}\right)^{-n}}$$
$$= \sqrt{18^{2} \left(1 + \frac{7.16 \cdot 2}{15}\right)^{-18}}$$
$$= 0.0432,$$

Thus,
$$BF_{10} = 1/BF_{01} \approx 1/0.0432 = 23.15$$

Bad approximation?

Sellke et al. (2001) showed that under a reasonable class of prior distributions for p-values, an upper bound for the Bayes factor can be computed directly from the p-value as

$$BF_{10} \le -\frac{1}{e \cdot p \ln(p)}$$

=\le -\frac{1}{e \cdot 0.0066 \cdot \ln(0.0066)}
= 11.10.

Thus, our BIC Bayes factor of 23.15 is quite an overestimate of the actual Bayes factor. **Can we compute an exact Bayes factor with only summary statistics?**

2. Pearson Type VI Bayes factor

In some new work², I derived the following exact Bayes factor:

$$BF_{10} = \frac{\Gamma\left(\frac{x+1}{2}\right) \cdot \Gamma\left(\frac{y}{2}\right)}{\Gamma\left(\frac{x+y}{2}\right) \cdot \Gamma\left(\frac{1}{2}\right)} \left(\frac{y}{y+xF}\right)^{\frac{1-y}{2}}$$

²Faulkenberry, T. J. (2021). The Pearson Bayes factor: An analytic formula for computing evidential value from minimal summary statistics, *Biometrical Letters*, *58*, 1-26. https://doi.org/10.2478/bile-2021-0001

Using our example, we have

$$BF_{10} = \frac{\Gamma\left(\frac{2+1}{2}\right) \cdot \Gamma\left(\frac{15}{2}\right)}{\Gamma\left(\frac{2+15}{2}\right) \cdot \Gamma\left(\frac{1}{2}\right)} \left(\frac{15}{15+2\cdot7.16}\right)^{\frac{1-15}{2}}$$
$$= \frac{0.8662269 \cdot 1871.254}{14034.41 \cdot 1.772454} (0.5116)^{-7}$$
$$= 7.268$$

Some observations:

- the resulting Bayes factor is reasonable w.r.t. the Sellke bound
- the expression is *analytic*, but not *closed form*

Theorem 1. Given an ANOVA summary reported in standard form F(x, y) (i.e., where x equals the between-treatments degrees of freedom and y equals the residual degrees of freedom), the Bayes factor can be expressed in closed form as

$$BF_{10} = C\sqrt{\left(\frac{y}{y+xF}\right)^{1-y}}$$

where C depends on the parity of x and y, as follows:

Case 1: if x and y are even, then

$$C = \frac{x! \left(\frac{y}{2} - 1\right)!}{2^x \left(\frac{x}{2}\right)! \left(\frac{x+y}{2} - 1\right)!}$$

Case 2: if x is even and y is odd, then

$$C = \frac{x!(y-1)! \left(\frac{x+y-1}{2}\right)!}{\left(\frac{x}{2}\right)! \left(\frac{y-1}{2}\right)! (x+y-1)!}$$

Case 3: if x is odd and y is even, then

$$C = \frac{2^{x+y-1}\left(\frac{x+y-1}{2}\right)!\left(\frac{y}{2}-1\right)!\left(\frac{x-1}{2}\right)!}{\pi(x+y-1)!}$$

Case 4: if x and y are odd, then

$$C = \frac{\left(\frac{x-1}{2}\right)!(y-1)!}{2^{y-1}\left(\frac{y-1}{2}\right)!\left(\frac{x+y}{2}-1\right)!}$$

Future goals

In a recent paper³, I described a web app that computes Bayes factors from ANOVA summaries. This has been integrated into a larger app called PsyStat – https://tomfaulkenberry.shinyapps.io/psystat

3F calculator fe	or single-factor ANOVA		
F-statistic:	Model definitions:		
2.17	\mathcal{H}_0 : all condition means are equal		
df1:	\mathcal{H}_1 : not all condition means are equal		
1			
df2:			
226	datalH0		
Design: * Between-subjects Preparated-measures Prior probability of null: 0.5	daukt		
Designed by Tom Faulkenberry based on methods described here and here	and a first state of the state		
For source code, vist my Github page	Bayes factors:		
	The Bayes factor for the null is 5.08 The Bayes factor for the alternative is 0.20 The observed data is approximately 5.08 times more likely under the null than the alternative		
	Posterior probabilities:		
	The posterior probability for the null is 0.8355		
	The posterior probability for the alternative is 0.1645		

- "Shiny app" (based on R)
- gives Bayes factors and posterior probabilities
- currently uses BIC approximation
- working on integrating exact Bayes factors

³Faulkenberry, T. J. (2019). Estimating evidential value from analysis of variance summaries: A comment on Ly et al.(2018). *Advances in Methods and Practices in Psychological Science*, 2(4), 406-409

Thank you!

- Twitter: @tomfaulkenberry
- Email: faulkenberry@tarleton.edu