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Size congruity effect
Typical laboratory task: choose the physically larger digit
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Typical result — mean RT larger for incongruent trials
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What about individual effects?
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Consider these observed effects d; as being drawn from (population)
distribution of true effects 9. What is the structure of this population?
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A new question

Does everybody exhibit the size congruity effect?

e if yes, then SCE is obligatory, resistant to strategic control, ...

e if no, then SCE is complex, malleable, ..

Importantly, both answers have downstream consequences for processing
architecture of numerical cognition
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A new question

Does everybody exhibit size congruity effect?

How to answer:

e build competing models of individual difference structures in SCE

e adjudicate the models via Bayesian model comparison
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Hierarchical structure

NNNNNN

Basic idea (Haaf & Rouder, 2017):

e model RTs as a random-effects linear
model with effect parameter 60;
(i=1...,N)

e assume (as baseline) that 6; is drawn
from a normal distribution with mean v
and variance n?

e use g-priors (Zellner & Siow, 1980),
specifying a priori scale on variance of
overall effect and individual variability
around effect

e define competing models by
constraining effect parameter 6,
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Four competing models

1. Unconstrained model, M,,
2. Positive-effects model, M
3. Common-effect model, M;

4. Null-effect model, Mg
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Unconstrained model

M., 1 0; ~ Normal(v, n?)
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Qualitative individual differences: some positive, some negative

vARMADILLO 2020 10



Positive-effects model
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Quantitative individual differences: all positive, vary in magnitude
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Common-effect / null models
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Model comparison

We use the Bayes factor, which indexes how well the observed data Y are
predicted under one model relative to another:

_pY [ M)
p(Y | M)

Bab

B,y = 10 means:

e the observed data are 10 times more likely under M, compared to M,

e "10-to-1 evidence for M, over M}"
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Bayes factor computations

(Y | M),
(Y [ My)

How do we compute By, =

Positive-effects

Unconstrained

Common-effect Null
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Bayes factor computations

p(Y | Ma)—,
p(Y [ Ms)

How do we compute B, =

p(Y | M) = / p(Y | €)pl(€)de

gex

vARMADILLO 2020

15



Bayes factor computations

p(Y | Ma)—,
p(Y [ Ms)

How do we compute B, =

p(Y | M) = / p(Y | €)pl(€)de

gex

Problem: for our models M, the parameter vectors & look like

€: (:uao-Qayaala"'aaN?el?"'79]\77904791/799)

so the integral is carried out in R2V+6.

For N = 35, this would be a 76-dimensional integral!
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Bayes factor computations

Positive-effects

Unconstrained

Common-effect

Null

A = analytic approach
o Zellner & Siow (1980); Rouder et al.
(2012)

e place g-priors on individual
intercepts and effect parameters

e everything except the g-parameters
integrates symbolically

® g-parameters can be well
approximated with MCMC sampling

e techniques coded into BayesFactor
package in R
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Bayes factor computations

Positive-effects

Unconstrained

Common-effect

Null

E = encompassing approach

o Kilugkist et al. (2005)

PO >0]Y, M,)

By =
* o P(6 > 0| My)

e probabilities computed as fraction of

MCMC samples from unrestricted
model that are positive for all
individuals (both a priori and a
posteriori)
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Datasets

We modeled three datasets, each using the same basic size-congruity task.

Dataset NN  # obs Mean RT SD Error rate
1 23 8,832 614 ms 349 ms 5.6%
2 53 20,352 593 ms 299 ms 4.2%
3 35 6,720 674 ms 354 ms 4.5%
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23

Red line = estimated effect € from

M,

Blue dots = individual effect
estimates 6;

Gray line = estimates from mean
differences d;

Gray area = 95% credible intervals
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Results - Dataset 1
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Results - Dataset 2
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Results - Dataset 3
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Summary points

Does everybody exhibit the size congruity effect?

e if yes, then SCE is obligatory, resistant to strategic control, ...

e if no, then SCE is complex, malleable, ..

Importantly, both answers have downstream consequences for processing
architecture of numerical cognition

e what does this say about early vs. late interaction debate (e.g.,
Faulkenberry et al., 2016; Sobel et al., 2016; 2017; Faulkenberry, Vick,
& Bowman, 2018; Bowman, 2020)
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Some other benefits:

e Bayes factors easy to interpret
e hierarchical structure removes trial noise from individual estimates

e common effect (CE) model provides important self-check:

— if CE model is best, is our design adequate to capture individual
differences

e Might be good approach to disentangle competing theories of mental
arithmetic

— Does everyone exhibit size-by-format interaction?
— Does everyone reflect fast counting in small addition problems?

vARMADILLO 2020 25



Thank you!

e slides available at https://tomfaulkenberry.github.io/talks.html

e Twitter: @tomfaulkenberry

e Email: faulkenberry@tarleton.edu
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