Modeling a latent structure of individual differences in numerical cognition

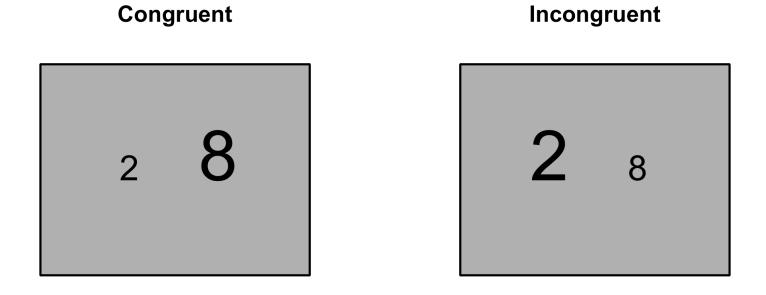
Thomas J. Faulkenberry & Kristen A. Bowman

Tarleton State University

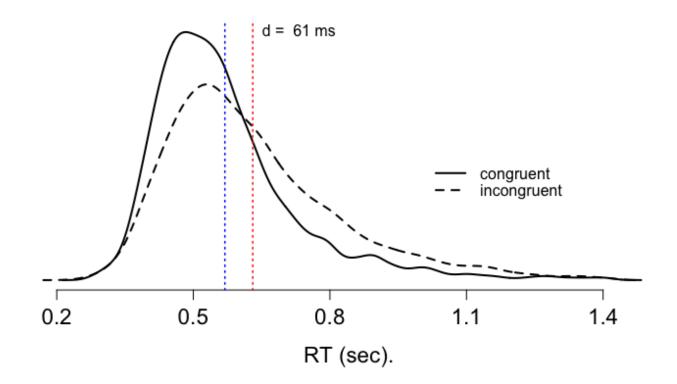
vARMADILLO 2020

Size congruity effect

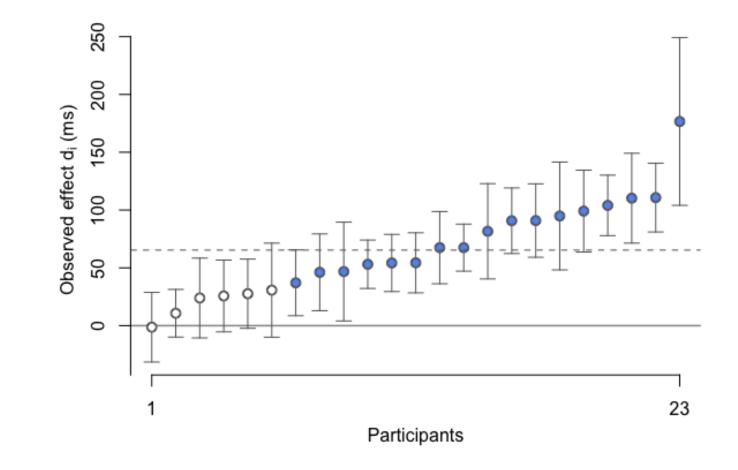
Typical laboratory task: choose the **physically larger** digit



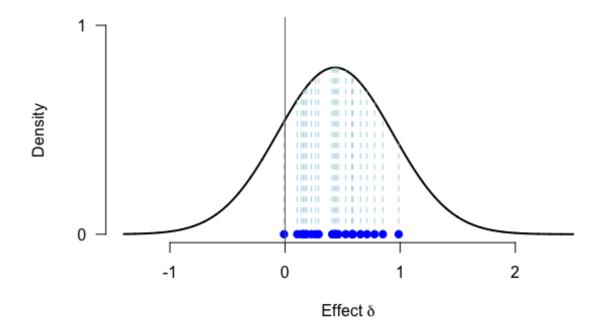
Typical result – mean RT larger for *incongruent trials*



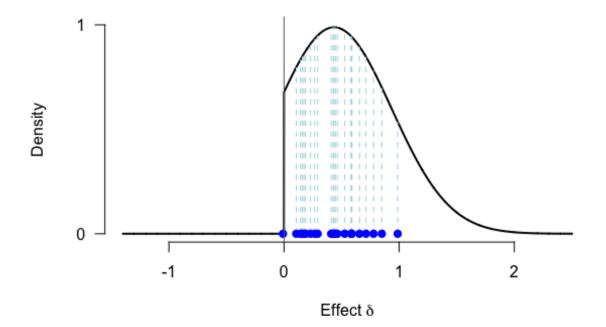
What about individual effects?



Consider these observed effects d_i as being drawn from (population) distribution of *true* effects δ . What is the structure of this population?



Consider these observed effects d_i as being drawn from (population) distribution of *true* effects δ . What is the structure of this population?



A new question

Does everybody exhibit the size congruity effect?

- if *yes*, then SCE is obligatory, resistant to strategic control, ...
- if *no*, then SCE is complex, malleable, ...

Importantly, both answers have downstream consequences for processing architecture of numerical cognition

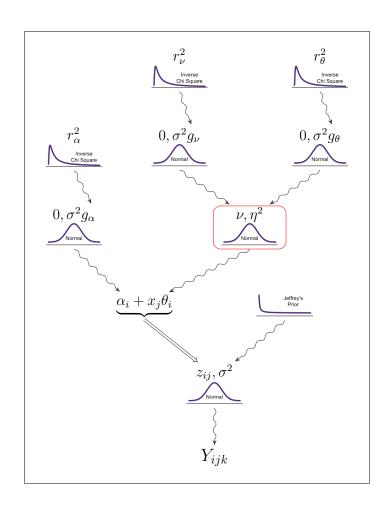
A new question

Does everybody exhibit size congruity effect?

How to answer:

- build competing models of individual difference structures in SCE
- adjudicate the models via Bayesian model comparison

Hierarchical structure



Basic idea (Haaf & Rouder, 2017):

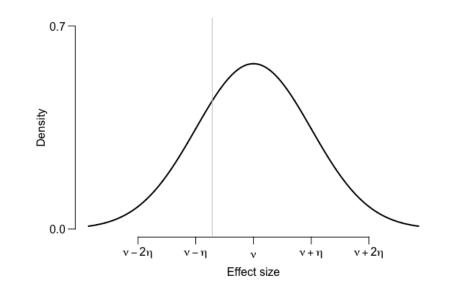
- model RTs as a random-effects linear model with effect parameter θ_i (i = 1 ..., N)
- assume (as baseline) that θ_i is drawn from a normal distribution with mean ν and variance η^2
- use g-priors (Zellner & Siow, 1980), specifying a priori scale on variance of overall effect and individual variability around effect
- define competing models by
 constraining effect parameter θ_i

Four competing models

- 1. Unconstrained model, \mathcal{M}_u
- 2. Positive-effects model, \mathcal{M}_+
- 3. Common-effect model, \mathcal{M}_1
- 4. Null-effect model, \mathcal{M}_0

Unconstrained model

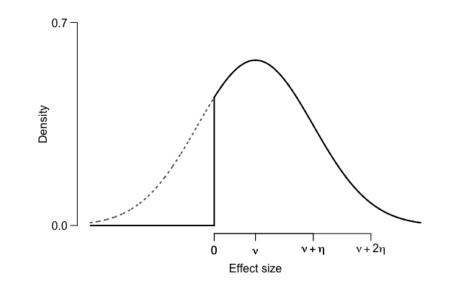
 $\mathcal{M}_u: \theta_i \sim \mathsf{Normal}(\nu, \eta^2)$



Qualitative individual differences: some positive, some negative

Positive-effects model

• $\mathcal{M}_+: \theta_i \sim \text{Normal}_+(\nu, \eta^2)$

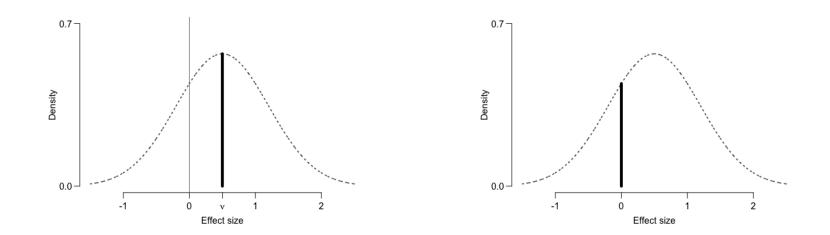


Quantitative individual differences: all positive, vary in magnitude

Common-effect / null models

• $\mathcal{M}_1: \theta_i = \nu$

• $\mathcal{M}_0: \theta_i = 0$



Model comparison

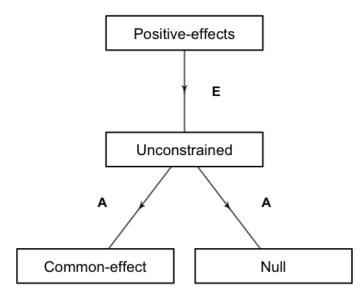
We use the **Bayes factor**, which indexes how well the observed data Y are predicted under one model relative to another:

$$B_{ab} = \frac{p(\boldsymbol{Y} \mid \mathcal{M}_a)}{p(\boldsymbol{Y} \mid \mathcal{M}_b)}$$

 $B_{ab} = 10$ means:

- the observed data are 10 times more likely under \mathcal{M}_a compared to \mathcal{M}_b
- "10-to-1 evidence for \mathcal{M}_a over \mathcal{M}_b "

How do we compute
$$B_{ab} = \frac{p(\boldsymbol{Y} \mid \mathcal{M}_a)}{p(\boldsymbol{Y} \mid \mathcal{M}_b)}$$
?



How do we compute $B_{ab} = \frac{p(\boldsymbol{Y} \mid \mathcal{M}_a)}{p(\boldsymbol{Y} \mid \mathcal{M}_b)}$?

$$p(\boldsymbol{Y} \mid \mathcal{M}) = \int_{\boldsymbol{\xi} \in \Xi} p(\boldsymbol{Y} \mid \boldsymbol{\xi}) p(\boldsymbol{\xi}) d\boldsymbol{\xi}$$

How do we compute $B_{ab} = \frac{p(\boldsymbol{Y} \mid \mathcal{M}_a)}{p(\boldsymbol{Y} \mid \mathcal{M}_b)}$?

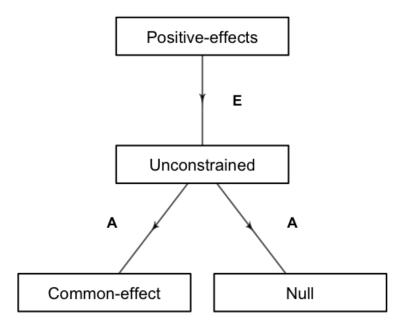
$$p(\boldsymbol{Y} \mid \mathcal{M}) = \int_{\boldsymbol{\xi} \in \Xi} p(\boldsymbol{Y} \mid \boldsymbol{\xi}) p(\boldsymbol{\xi}) d\boldsymbol{\xi}$$

Problem: for our models \mathcal{M} , the parameter vectors $\boldsymbol{\xi}$ look like

$$\boldsymbol{\xi} = (\mu, \sigma^2, \nu, \alpha_1, \dots, \alpha_N, \theta_1, \dots, \theta_N, g_\alpha, g_\nu, g_\theta)$$

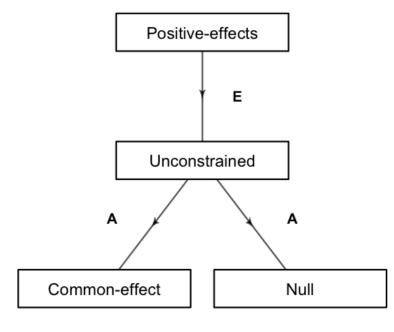
so the integral is carried out in \mathbb{R}^{2N+6} .

For N = 35, this would be a 76-dimensional integral!



A = analytic approach

- Zellner & Siow (1980); Rouder et al. (2012)
- place *g*-priors on individual intercepts and effect parameters
- everything *except* the *g*-parameters integrates symbolically
- *g*-parameters can be well approximated with MCMC sampling
- techniques coded into BayesFactor package in R



- E = encompassing approach
- Klugkist et al. (2005)

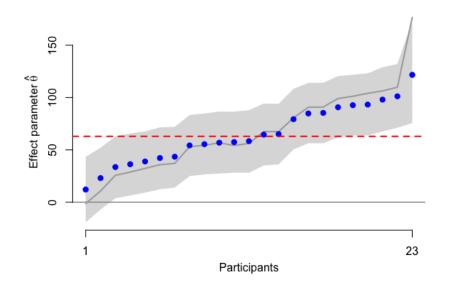
•
$$B_{+u} = \frac{P(\boldsymbol{\theta} > 0 \mid \boldsymbol{Y}, \mathcal{M}_u)}{P(\boldsymbol{\theta} > 0 \mid \mathcal{M}_u)}$$

 probabilities computed as fraction of MCMC samples from unrestricted model that are **positive** for all individuals (both *a priori* and *a posteriori*)

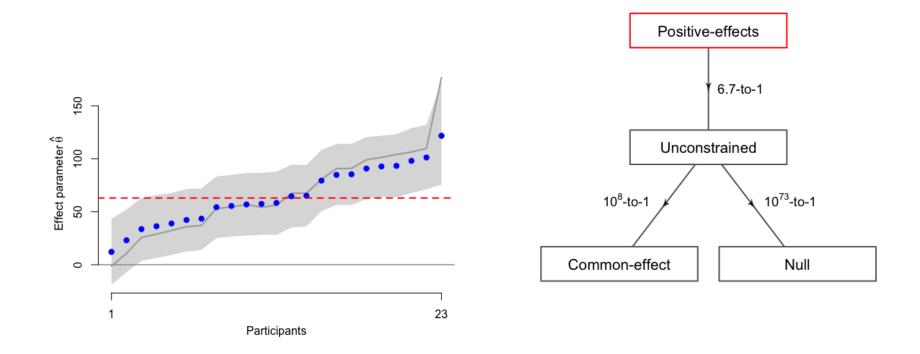
Datasets

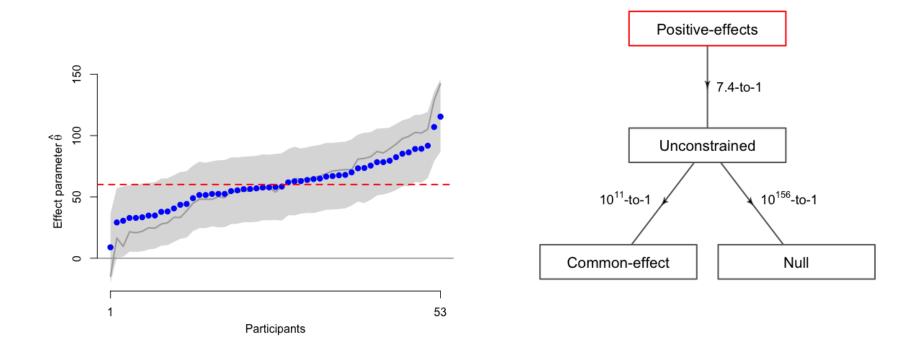
We modeled three datasets, each using the same basic size-congruity task.

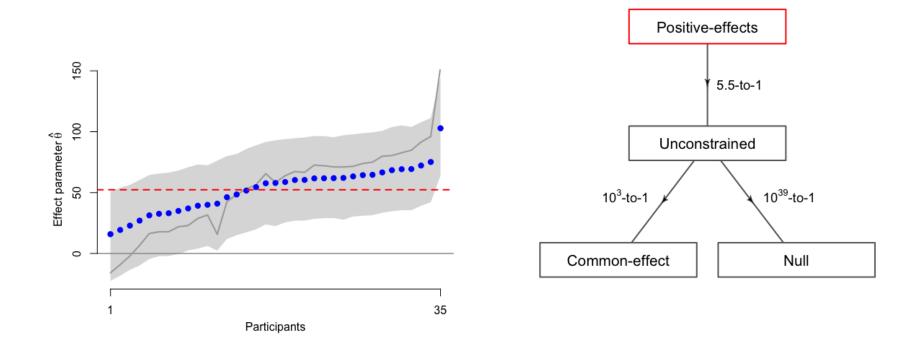
Dataset	N	# obs	Mean RT	SD	Error rate
1	23	8,832	614 ms	349 ms	5.6%
2	53	20,352	593 ms	299 ms	4.2%
3	35	6,720	674 ms	354 ms	4.5%



- Red line = estimated effect θ from \mathcal{M}_1
- Blue dots = individual effect estimates θ_i
- Gray line = estimates from mean differences d_i
- Gray area = 95% credible intervals







Summary points

Does everybody exhibit the size congruity effect?

- if *yes*, then SCE is obligatory, resistant to strategic control, ...
- if *no*, then SCE is complex, malleable, ...

Importantly, both answers have downstream consequences for processing architecture of numerical cognition

 what does this say about *early vs. late* interaction debate (e.g., Faulkenberry et al., 2016; Sobel et al., 2016; 2017; Faulkenberry, Vick, & Bowman, 2018; Bowman, 2020) Some other benefits:

- Bayes factors easy to interpret
- hierarchical structure removes trial noise from individual estimates
- common effect (CE) model provides important self-check:
 - if CE model is best, is our design adequate to capture individual differences
- Might be good approach to disentangle competing theories of mental arithmetic
 - Does everyone exhibit size-by-format interaction?
 - Does everyone reflect fast counting in small addition problems?

Thank you!

- slides available at https://tomfaulkenberry.github.io/talks.html
- Twitter: @tomfaulkenberry
- Email: faulkenberry@tarleton.edu