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Size congruity effect

Typical laboratory task: choose the physically larger digit
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Typical result – mean RT larger for incongruent trials
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What about individual effects?
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Consider these observed effects di as being drawn from (population)
distribution of true effects δ. What is the structure of this population?
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Consider these observed effects di as being drawn from (population)
distribution of true effects δ. What is the structure of this population?
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A new question

Does everybody exhibit the size congruity effect?

• if yes, then SCE is obligatory, resistant to strategic control, . . .

• if no, then SCE is complex, malleable, . . .

Importantly, both answers have downstream consequences for processing
architecture of numerical cognition
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A new question

Does everybody exhibit size congruity effect?

How to answer:

• build competing models of individual difference structures in SCE

• adjudicate the models via Bayesian model comparison
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Hierarchical structure
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θ Basic idea (Haaf & Rouder, 2017):

• model RTs as a random-effects linear

model with effect parameter θi
(i = 1 . . . , N)

• assume (as baseline) that θi is drawn

from a normal distribution with mean ν

and variance η2

• use g-priors (Zellner & Siow, 1980),

specifying a priori scale on variance of

overall effect and individual variability

around effect

• define competing models by

constraining effect parameter θi
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Four competing models

1. Unconstrained model, Mu

2. Positive-effects model, M+

3. Common-effect model, M1

4. Null-effect model, M0
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Unconstrained model

Mu : θi ∼ Normal(ν, η2)

Qualitative individual differences: some positive, some negative
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Positive-effects model

• M+ : θi ∼ Normal+(ν, η
2)

Quantitative individual differences: all positive, vary in magnitude
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Common-effect / null models

• M1 : θi = ν • M0 : θi = 0
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Model comparison

We use the Bayes factor, which indexes how well the observed data Y are
predicted under one model relative to another:

Bab =
p(Y | Ma)

p(Y | Mb)

Bab = 10 means:

• the observed data are 10 times more likely under Ma compared to Mb

• ”10-to-1 evidence for Ma over Mb”
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Bayes factor computations

How do we compute Bab =
p(Y | Ma)

p(Y | Mb)
?
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Bayes factor computations

How do we compute Bab =
p(Y | Ma)

p(Y | Mb)
?

p(Y | M) =

∫

ξ∈Ξ

p(Y | ξ)p(ξ)dξ
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Bayes factor computations

How do we compute Bab =
p(Y | Ma)

p(Y | Mb)
?

p(Y | M) =

∫

ξ∈Ξ

p(Y | ξ)p(ξ)dξ

Problem: for our models M, the parameter vectors ξ look like

ξ = (µ, σ2, ν, α1, . . . , αN , θ1, . . . , θN , gα, gν, gθ)

so the integral is carried out in R2N+6.

For N = 35, this would be a 76-dimensional integral!
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Bayes factor computations

A = analytic approach

• Zellner & Siow (1980); Rouder et al.

(2012)

• place g-priors on individual

intercepts and effect parameters

• everything except the g-parameters

integrates symbolically

• g-parameters can be well

approximated with MCMC sampling

• techniques coded into BayesFactor

package in R
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Bayes factor computations

E = encompassing approach

• Klugkist et al. (2005)

• B+u =
P (θ > 0 | Y ,Mu)

P (θ > 0 | Mu)

• probabilities computed as fraction of

MCMC samples from unrestricted

model that are positive for all

individuals (both a priori and a

posteriori)
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Datasets

We modeled three datasets, each using the same basic size-congruity task.

Dataset N # obs Mean RT SD Error rate
1 23 8,832 614 ms 349 ms 5.6%
2 53 20,352 593 ms 299 ms 4.2%
3 35 6,720 674 ms 354 ms 4.5%
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Results - Dataset 1

• Red line = estimated effect θ from

M1

• Blue dots = individual effect

estimates θi

• Gray line = estimates from mean

differences di

• Gray area = 95% credible intervals
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Results - Dataset 1
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Results - Dataset 2
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Results - Dataset 3
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Summary points

Does everybody exhibit the size congruity effect?

• if yes, then SCE is obligatory, resistant to strategic control, . . .

• if no, then SCE is complex, malleable, . . .

Importantly, both answers have downstream consequences for processing
architecture of numerical cognition

• what does this say about early vs. late interaction debate (e.g.,
Faulkenberry et al., 2016; Sobel et al., 2016; 2017; Faulkenberry, Vick,
& Bowman, 2018; Bowman, 2020)
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Some other benefits:

• Bayes factors easy to interpret

• hierarchical structure removes trial noise from individual estimates

• common effect (CE) model provides important self-check:

– if CE model is best, is our design adequate to capture individual
differences

• Might be good approach to disentangle competing theories of mental
arithmetic

– Does everyone exhibit size-by-format interaction?
– Does everyone reflect fast counting in small addition problems?
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Thank you!

• slides available at https://tomfaulkenberry.github.io/talks.html

• Twitter: @tomfaulkenberry

• Email: faulkenberry@tarleton.edu
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