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The goal of this talk is to describe some methods for evaluating evidential
value of data in analysis of variance models.

By evidential value, I mean the factor by which the prior odds is updated
after observing data:

p(H1 | D)

p(H0 | D)| {z }
posterior odds

=

p(H1)

p(H0)| {z }
prior odds

⇥ p(D | H1)

p(D | H0)| {z }
predictive updating factor

Kass and Raftery (1995) called this predictive updating factor the Bayes
factor
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Motivating example: consider test scores from students in three instructional
treatments:

Treatment 1 Treatment 2 Treatment 3
2 5 8
3 9 6
8 10 12
6 13 11
5 8 11
6 9 12

M = 5 M = 9 M = 10

Typical question – are there di↵erences among these condition means?

JMM 2020 2



Classical approach - analysis of variance (ANOVA)

• model Y
ij

= µ+ ↵

j

+ "

ij

, where "

ij

⇠ N (0,�

2
)

• assume “null hypothesis” H0 : ↵j

= 0

• compute probability of observing data Y

ij

under H0

• if data is rare under H0, reject H0

• index “rareness” by computing F (a ratio of between-group and within-
group variances)
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ANOVA computations

source SS df MS F

between treatments 84 2 42 7.16
within treatments 88 15 5.87

total 172 17
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p

F=7.16

Since our data Y

ij

is rare under H0,
we reject H0 as an implausible model
restriction.

This ignores predictive adequacy of
H1.
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The Bayes factor

B10 =
p(D | H1)

p(D | H0)

tells us how much better H1 predicts our observed data compared to H0.

Example: suppose B12 = 5. This means that the observed data are 5 times
more likely under H1 than H0.

Problem – computing Bayes factors is hard!

B10 =
p(D | H1)

p(D | H0)

=

R
f(D | ✓1,H1)⇡(✓1 | H1)d✓1R
f(D | ✓0,H0)⇡(✓0 | H0)d✓0

Today, I’ll describe two approaches to making this computation easier
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1. BIC approximation (Raftery, 1995; Wagenmakers, 2007; Masson,
2011)

Basic idea – if we construct 2nd order Taylor approximation of log-marginal
likelihood of each H

i

, we get

BF01 ⇡ exp

 
BIC(H1)� BIC(H0)

2

!
,

where

BIC(H
i

) = n ln

 
SSR

SST

!
+ k lnn.
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In 20181, I derived a simple formula that computes this BIC Bayes factor
using only the ANOVA summary statistics:

BF01 ⇡

vuut
n

x

 
1 +

Fx

y

!�n

,

where

• F is the observed F -ratio

• x, y are the numerator/denominator df, respectively

• n is the total number of observations.

1
Faulkenberry, T.J. (2018). Computing Bayes factors to measure evidence from experiments: An extension of the BIC

approximation. Biometrical Letters, 55, 31-43
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Using the summary statistics from the ANOVA (F = 7.16, x = 2, y = 15,
and n = 18), we get

BF01 ⇡

vuut
n

x

 
1 +

Fx

y

!�n

=

vuut
18

2

 
1 +

7.16 · 2
15

!�18

= 0.0432,

Thus, BF10 = 1/BF01 ⇡ 1/0.0432 = 23.15

JMM 2020 8



Bad approximation?

Sellke et al. (2001) showed that under a reasonable class of prior
distributions for p-values, an upper bound for the Bayes factor can be
computed directly from the p-value as

BF10  � 1

e · p ln(p)
= � 1

e · 0.0066 · ln(0.0066)
= 11.10.

Thus, our BIC Bayes factor of 23.15 is quite an overestimate of the actual
Bayes factor. Can we compute an exact Bayes factor with only

summary statistics?
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2. Pearson Type VI Bayes factor

In some new work2, I derived the following exact Bayes factor:

BF10 =

�

⇣
x+1
2

⌘
· �
⇣
y

2

⌘

�

⇣
x+y

2

⌘
· �
⇣
1
2

⌘
 

y

y + xF

!1�y

2

.

2based on Wang & Sun (2014); preprint forthcoming on ArXiV
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Using our example, we have

BF10 =

�

⇣
2+1
2

⌘
· �
⇣
15
2

⌘

�

⇣
2+15

2

⌘
· �
⇣
1
2

⌘
 

15

15 + 2 · 7.16

!1�15
2

=

0.8662269 · 1871.254
14034.41 · 1.772454 (0.5116)

�7

= 7.268

Some observations:

• the resulting Bayes factor is reasonable w.r.t. the Sellke bound

• the expression is analytic, but not closed form
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Theorem 1. Given an ANOVA summary reported in standard form
F (x, y) (i.e., where x equals the between-treatments degrees of freedom
and y equals the residual degrees of freedom), the Bayes factor can be
expressed in closed form as

BF10 = C

vuut
 

y

y + xF

!1�y

where C depends on the parity of x and y, as follows:

Case 1: if x and y are even, then

C =

x!

�
y

2 � 1

�
!

2

x

�
x

2

�
!

�
x+y

2 � 1

�
!
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Case 2: if x is even and y is odd, then

C =

x!(y � 1)!

�
x+y�1

2

�
!

�
x

2

�
!

�
y�1
2

�
!(x+ y � 1)!

Case 3: if x is odd and y is even, then

C =

2

x+y�1
�
x+y�1

2

�
!

�
y

2 � 1

�
!

�
x�1
2

�
!

⇡(x+ y � 1)!

Case 4: if x and y are odd, then

C =

�
x�1
2

�
!(y � 1)!

2

y�1
�
y�1
2

�
!

�
x+y

2 � 1

�
!
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Future goals

In a new paper3, I describe a web app that computes Bayes factors from
ANOVA summaries – https://tomfaulkenberry.shinyapps.io/anovaBFcalc

• “Shiny app” (based on R)

• gives Bayes factors and posterior

probabilities

• currently uses BIC approximation

• working on integrating exact Bayes factors

3
Faulkenberry, T. J. (2019). Estimating evidential value from analysis of variance summaries: A comment on Ly et al.(2018).

Advances in Methods and Practices in Psychological Science, 2(4), 406-409
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Thank you!

• Twitter: @tomfaulkenberry

• Email: faulkenberry@tarleton.edu
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