Gamma function approximations for computing closed-form Bayes factors

Thomas J. Faulkenberry

Tarleton State University

Background - common goal in applied settings is to compare means from treatment groups.

- Hypothesis test: compare competing models of data \boldsymbol{y}

$$
\begin{aligned}
& \mathcal{H}_{0}: \mu_{1}=\mu_{2} \\
& \mathcal{H}_{1}: \mu_{1} \neq \mu_{2}
\end{aligned}
$$

- How to compare? - Bayes factor (Kass \& Raftery, 1995)

$$
\mathrm{BF}_{10}=\frac{P\left(\boldsymbol{y} \mid \mathcal{H}_{1}\right)}{P\left(\boldsymbol{y} \mid \mathcal{H}_{0}\right)}
$$

Problem - while conceptually simple, Bayes factor is hard to compute. For each model \mathcal{H}_{i}, must compute marginal likelihood:

$$
P\left(\boldsymbol{y} \mid \mathcal{H}_{i}\right)=\int P\left(\boldsymbol{y} \mid \boldsymbol{\theta}, \mathcal{H}_{i}\right) \pi\left(\boldsymbol{\theta}, \mathcal{H}_{i}\right) d \boldsymbol{\theta}
$$

Difficulties:

- must assign prior distribution to model parameters $\boldsymbol{\theta}$
- resulting marginal likelihood usually involves integral representation

A solution (Wang \& Liu, 2016; Faulkenberry, 2020):
With a specific choice of prior, the Bayes factor has an analytic representation:

$$
\mathrm{BF}_{10}=\frac{\Gamma\left(\frac{\nu}{2}\right)}{\Gamma\left(\frac{\nu}{2}+\frac{1}{2}\right) \sqrt{\pi}}\left(1+\frac{t^{2}}{\nu}\right)^{\frac{\nu-1}{2}}
$$

But - could we get rid of the need for computing the gamma function?

That is, can we approximate

$$
C_{\nu}=\frac{\Gamma\left(\frac{\nu}{2}\right)}{\Gamma\left(\frac{\nu}{2}+\frac{1}{2}\right)} ?
$$

As it happens, this problem has had some interest since the 1940s!
(see Borwein \& Corless (2018) - American Mathematical Monthly)

Today, I'll describe three approaches to approximating C_{ν} :

1. using Stirling's formula for gamma function
2. using classical asymptotic formula of Wendel (1948)
3. using improved approximation of Frame (1949)

Approach 1: Stirling's Formula

$$
\Gamma(x) \sim \sqrt{2 \pi} \cdot x^{x-\frac{1}{2}} \cdot e^{-x}(\text { see Jameson, 2013 })
$$

$$
\begin{aligned}
C_{\nu} & =\frac{\Gamma\left(\frac{\nu}{2}\right)}{\Gamma\left(\frac{\nu+1}{2}\right)} \\
& =\frac{\sqrt{2 \pi}\left(\frac{\nu}{2}\right)^{\frac{\nu}{2}-\frac{1}{2}} \cdot e^{-\frac{\nu}{2}}}{\sqrt{2 \pi\left(\frac{\nu+1}{2}\right)^{\frac{\nu}{2}} \cdot e^{-\frac{\nu+1}{2}}}=\cdots} \\
& =\sqrt{2 e \frac{\nu^{\nu-1}}{(\nu+1)^{\nu}}}
\end{aligned}
$$

Approach 2: Wendel's approximation (1948)

$$
\left(1+\frac{a}{x+a}\right)^{1-a} \leq \frac{\Gamma(x+a)}{x^{a} \cdot \Gamma(x)} \leq 1
$$

For fixed a, letting $x \longrightarrow \infty$ gives

$$
\frac{\Gamma(x+a)}{x^{a} \cdot \Gamma(x)} \longrightarrow 1
$$

implying

$$
\frac{\Gamma(x)}{\Gamma(x+a)} \longrightarrow x^{-a}
$$

We can enlist this asymptotic result in our current context by letting $x=\nu / 2$ and $a=1 / 2$, giving a very simple approximation:

$$
\begin{aligned}
C_{\nu} & =\frac{\Gamma\left(\frac{\nu}{2}\right)}{\Gamma\left(\frac{\nu+1}{2}\right)} \\
& \sim\left(\frac{\nu}{2}\right)^{-\frac{1}{2}} \\
& =\sqrt{\frac{2}{\nu}}
\end{aligned}
$$

Approach 3: Frame's improved approximation (1949):

$$
\frac{\Gamma\left(n+\frac{1+u}{2}\right)}{\Gamma\left(n+\frac{1-u}{2}\right)} \sim\left(n^{2}+\frac{1-u^{2}}{12}\right)^{\frac{u}{2}}
$$

The main work here is to show that with the following specific choices:

- $u=-\frac{1}{2}$
- $n=\frac{2 \nu-1}{4}$
we can transforms LHS directly into C_{ν}.

So, Frame's approximation gives us

$$
\begin{aligned}
C_{\nu} & \sim\left(n^{2}+\frac{1-u^{2}}{12}\right)^{\frac{u}{2}} \\
& =\left[\left(\frac{2 \nu-1}{4}\right)^{2}+\frac{1-\left(-\frac{1}{2}\right)^{2}}{12}\right]^{-\frac{1}{4}} \\
& =\cdots \\
& =\left(\frac{8}{2 \nu^{2}-2 \nu+1}\right)^{\frac{1}{4}}
\end{aligned}
$$

Three approximations - how good are they?

1. $C_{\nu}=\sqrt{2 e \frac{\nu^{\nu-1}}{(\nu+1)^{\nu}}}$ (Stirling)
2. $C_{\nu}=\sqrt{\frac{2}{\nu}}$ (Wendel)
3. $C_{\nu}=\left(\frac{8}{2 \nu^{2}-2 \nu+1}\right)^{\frac{1}{4}}$ (Frame)

Simulation study:

- for $N=4, \ldots, 100$, generate 1000 random datasets of size N
- compute analytic Bayes factor
- compute closed-form approximations
- plot percent error as a function of N

They're all pretty good!

An example - Borota et al. (2014) observed significantly better test scores for participants who received 200 mg of caffeine compared to those who took a placebo, $t(71)=2.0, p=0.049$.

Recall:

$$
\begin{aligned}
\mathrm{BF}_{10} & =\frac{C_{\nu}}{\sqrt{\pi}}\left(1+\frac{t^{2}}{\nu}\right)^{\frac{\nu-1}{2}} \\
& =\frac{C_{71}}{\sqrt{\pi}}\left(1+\frac{(2.0)^{2}}{71}\right)^{\frac{71-1}{2}} \\
& =C_{71} \cdot 3.8417
\end{aligned}
$$

C_{71} - Stirling approximation

$$
\begin{aligned}
C_{71} & \approx \sqrt{2 e \frac{\nu^{\nu-1}}{(\nu+1)^{\nu}}} \\
& =\sqrt{2 e \frac{71^{71-1}}{(71+1)^{71}}} \\
& =\sqrt{2 e \frac{71^{70}}{(72)^{71}}} \\
& =0.1684
\end{aligned}
$$

This gives $\mathrm{BF}_{10}=0.1684 \cdot 3.8417=0.647$
C_{71} - Wendel approximation

$$
\begin{aligned}
C_{71} & \approx \sqrt{\frac{2}{\nu}} \\
& =\sqrt{\frac{2}{71}} \\
& =0.1678
\end{aligned}
$$

This gives $\mathrm{BF}_{10}=0.1678 \cdot 3.8417=0.645$
C_{71} - Frame approximation

$$
\begin{aligned}
C_{71} & \approx\left(\frac{8}{2 \nu^{2}-2 \nu+1}\right)^{\frac{1}{4}} \\
& =\left(\frac{8}{2(71)^{2}-2(71)+1}\right)^{\frac{1}{4}} \\
& =0.1684
\end{aligned}
$$

This gives $\mathrm{BF}_{10}=0.1684 \cdot 3.8417=0.647$

Recall - Borota et al. (2014) observed significantly better test scores for participants who received 200 mg of caffeine compared to those who took a placebo, $t(71)=2.0, p=0.049$.

Note: $\mathrm{BF}_{01}=\frac{1}{\mathrm{BF}_{10}}=\frac{1}{0.65}=1.54$.
This means that Borota's data are 1.54 times more likely under the null hypothesis \mathcal{H}_{0} than under the alternative hypothesis \mathcal{H}_{1} (this is an example of something called Lindley's paradox).

Moral - don't trust p-values just below 0.05 !

Thank you!

- slides available at https://tomfaulkenberry.github.io
- Twitter/Mastodon: @tomfaulkenberry@mathstodon.xyz
- Email: faulkenberry@tarleton.edu

