A systems factorial technology approach to classifying the architecture of fraction perception

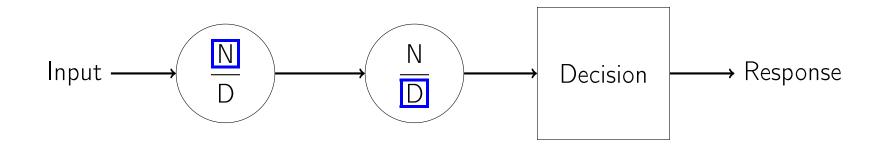
Thomas J. Faulkenberry

Tarleton State University

MCLS 2020

Task: decide if fraction contains a number greater than 5 in *either* component.

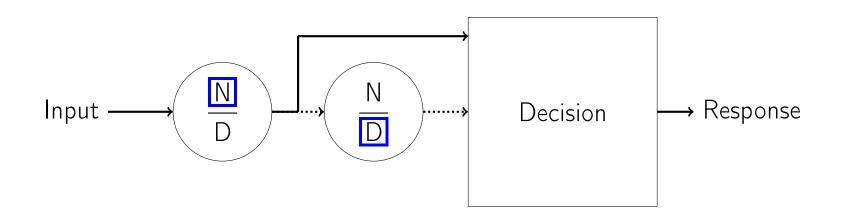
Question: how do we make this decision?


Imagine our mental "factory" has two workers, Nelson and Dani, responsible for making the decision for the numerator and denominator, respectively.

Some possibilities:

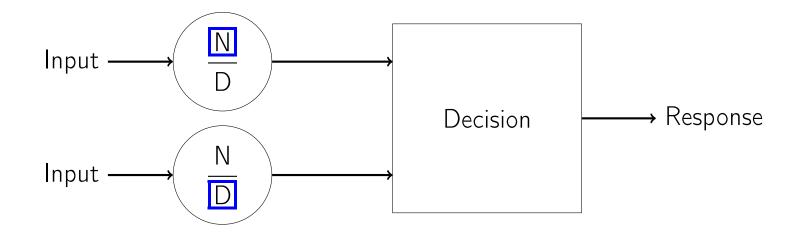
- Nelson looks at numerator first, then passes the fraction to Dani, who looks at denominator (regardless of Nelson's decision)
- Nelson looks at numerator first, only passing to Dani if her component doesn't satisfy "greater than 5" condition.
- Nelson and Dani look at their components at the same time, and fraction is passed on once both Nelson and Dani have made their respective decisions
- Nelson and Dani look at their components at the same time. If one of them finds that their component satisfies "greater than 5" condition, the fraction is immediately passed on.

Serial architecture


Stopping rule = exhaustive

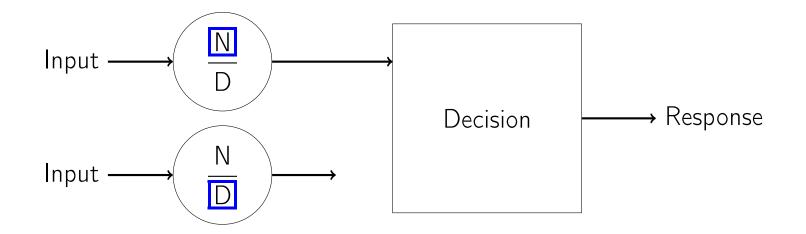
Each target is processed sequentially – both N and D must complete before response is made

Serial architecture


Stopping rule = self-terminating

Each target is processed sequentially – but either $N \mbox{ or } D$ is sufficient to trigger response

Parallel architecture


Stopping rule = exhaustive

Each target is processed simultaneously – both N and D must complete before response is made

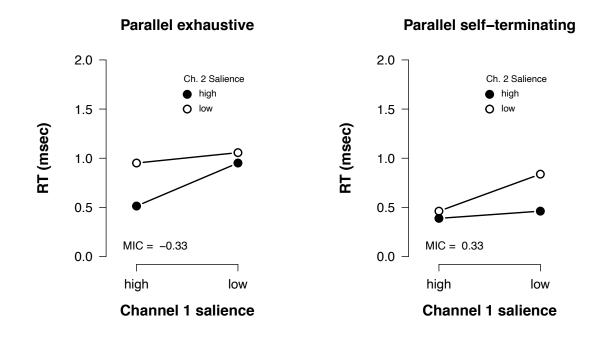
Parallel architecture

Stopping rule = self-terminating

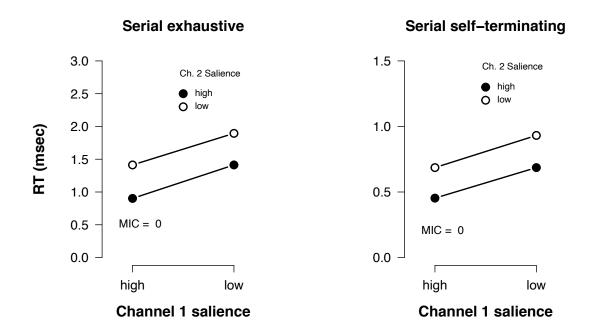

Each target is processed simultaneously – but either $N \mbox{ or } D$ is sufficient to trigger response

Our goal is to determine which of these architectures governs how we process fractions.

- Parallel exhaustive
- Parallel self-terminating
- Serial exhaustive
- Serial self-terminating


Unfortunately, we cannot *directly* observe how our "workers" Nelson and Dani handle their respective tasks.

However, we can *indirectly* observe them by manipulating the inputs they receive and measuring the effect on performance.



We call this a **salience** manipulation. The goal is to make the task harder by manipulating how easy it is for Nelson/Dani to make their decisions.

Classically (e.g., Sternberg), problems of this type have been studied by comparing **mean** response times (RTs) in each of the salience conditions.

Classically (e.g., Sternberg), problems of this type have been studied by comparing **mean** response times (RTs) in each of the salience conditions.

Problem – model mimicry: these techniques cannot distinguish between different stopping rules for serial architecture.

Solution: model the entire *distribution* of RTs and use tools of *systems factorial technology* (Townsend & Nozawa, 1995; Houpt, Heathcote, & Eidels, 2017)

- Consider system as two processing channels with completion times T_N and T_D (not observed)
- build 4 models of RT, the total completion time (observed)

$$- \mathcal{M}_1$$
: parallel exhaustive $\rightarrow RT = \max(T_N, T_D)$

$$-\mathcal{M}_2$$
: parallel self-terminating $\rightarrow RT = \min(T_N, T_D)$

$$- \mathcal{M}_3$$
: serial exhaustive $\rightarrow RT = T_N + T_D$

$$- \ \mathcal{M}_4: \text{ serial self-terminating} \to RT = \begin{cases} T_N & \text{with probability } p \\ T_D & \text{with probability } 1-p \end{cases}$$

Task: decide if fraction contains a number greater than 5 in either component.

Stimuli:

- numerators = 2,3,4,6,7,8
- denominators = 2,3,4,6,7,8
- 36 possible fractions
- how many times do we repeat them?

		Numerator					
		greate	r than 5	less t	han 5		
		Salience: Numerator		Salience: Numerator			
		high	low	high	low	-1	Salience: Denominator
Denominator	less than 5 greater than 5	6	6	2	2	high	
		-	-	-	-		
		7	7	7	7		
		6	6	2	2	1	e: De
		-	-	-	-	low	Salienc
		7	7	7	7		
		6	6	2	2	high	Salience: Denominator
		-	-	-	-		
		2	2	3	3	 	
		6	6	2	2	low	
		-	-	-	-		
		2	2	3	3		

Task: decide if fraction contains a number greater than 5 in either component.

Stimuli:

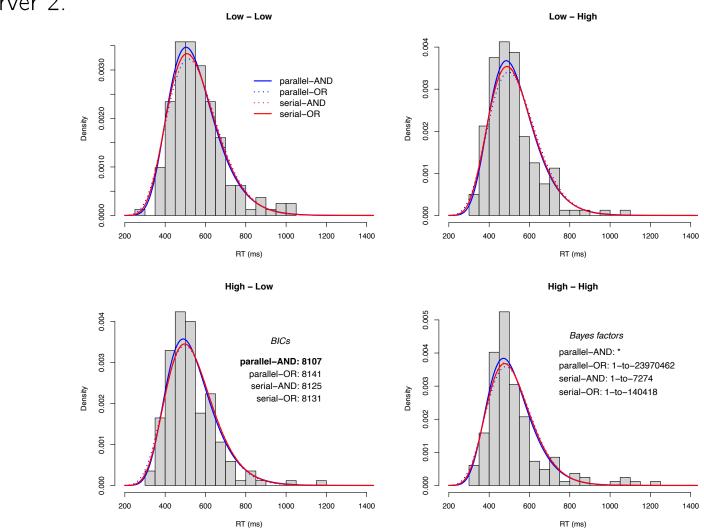
- 36 fractions
- need between 100 and 200 trials in each double target condition
- 5 reps of 36 = 180 trials
- 180 trials = 1/24 of stimulus set
- $24 \times 180 = 4,320$ trials

Double	target	Single target (denom.)	
HH $p = \frac{1}{24}$	LH $p = \frac{1}{24}$	1	
$HL \\ p = \frac{1}{24}$	$LL \\ p = \frac{1}{24}$	$p = \frac{1}{6}$	
<i>p</i> =	= $\frac{1}{6}$	$p = \frac{1}{2}$	

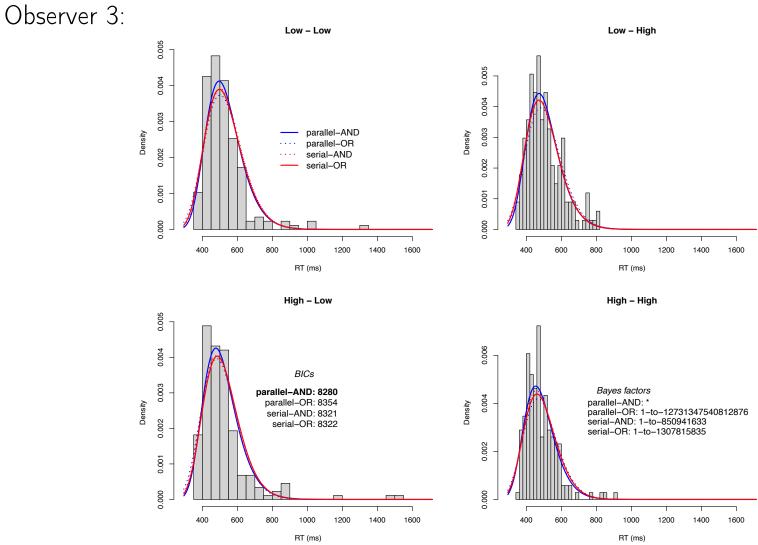
Single target (num.) No targets

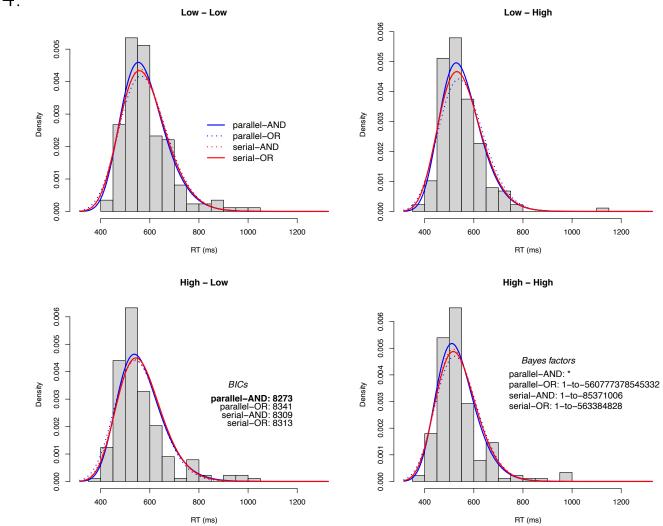

Modeling workflow: for each of our ${\cal N}=5$ observers, we:

- filter out errors (M = 3.75%) and RT outliers (M = 1.6%)
- fit each model to observed RTs via maximum likelihood estimation
- index model fit by BIC

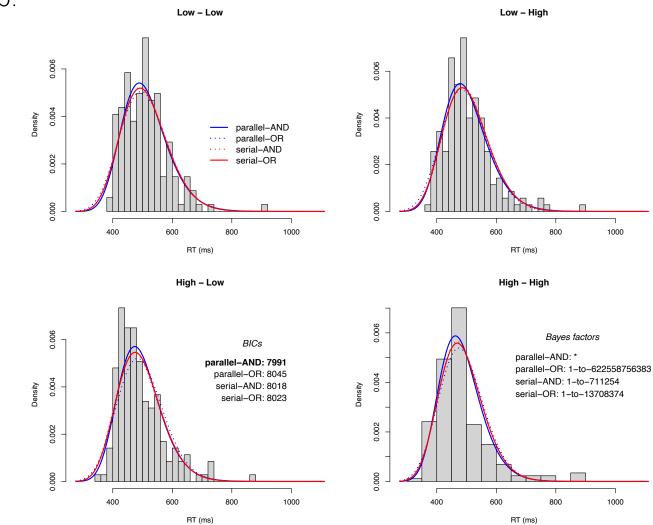

$$- \operatorname{BIC} = k \log(N) - 2 \log \left(p(y \mid \theta_{\max}) \right)$$

- smaller BIC = better model fit
- estimate predictive adequacy of each model with Bayes factor


$$- BF_{12} \approx \exp\left(\frac{BIC_2 - BIC_1}{2}\right)$$



Observer 1:



Observer 2:

Observer 5:

Interim thoughts:

- Fraction components seem to be processed in a *parallel exhaustive* manner
- Next questions:
 - how might model fits be improved?
 - do conclusions change with different model specifications?
 - can we improve the salience manipulation (i.e., better separation of RT distributions)?
 - how can this method be applied to other fundamental questions in numerical cognition?

Thanks!

- Email: faulkenberry@tarleton.edu
- Twitter: @tomfaulkenberry
- Web: https://tomfaulkenberry.github.io