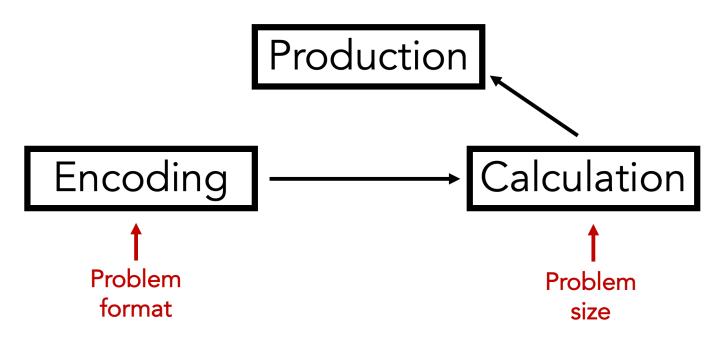
Testing the independence of encoding and calculation in mental addition: A confirmatory Bayesian analysis

Thomas J. Faulkenberry & Bryanna Scheuler

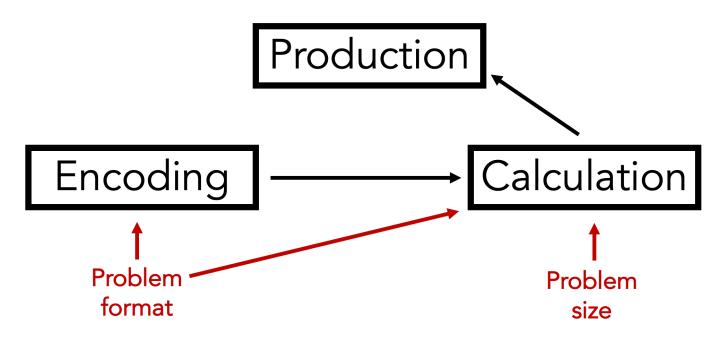
Tarleton State University

Psychonomics 2022

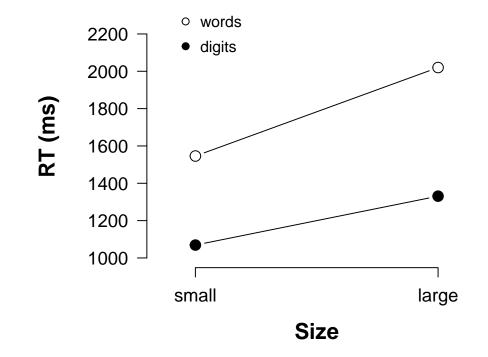

How does surface format impact the solution of arithmetic problems?

- are effects localized to encoding? (e.g., Dehaene & Cohen, 1995; McCloskey, 1992; Noël, Fias, & Brysbaert, 1997)
- do effects penetrate downstream to directly affect calculation? (e.g., Blankenberger & Vorberg, 1997; Campbell, 1994; Campbell & Fugelsang, 2001)

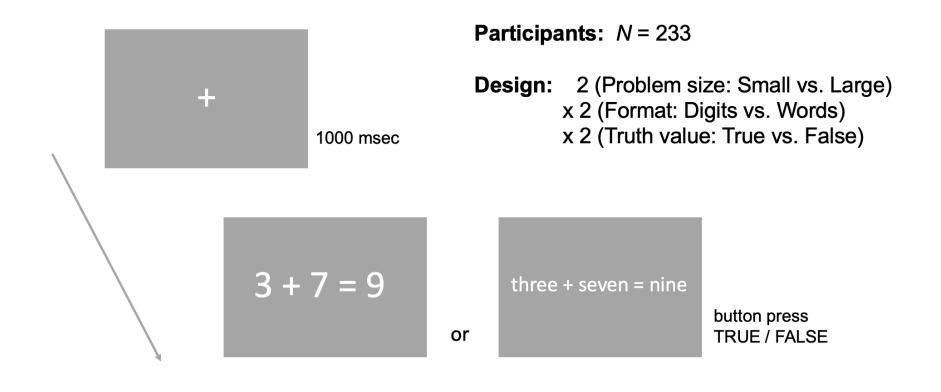
Two competing accounts:


1. Additive model

 $\mathcal{M}_1:\mathsf{RT}\sim\mathsf{format}+\mathsf{size}$


Two competing accounts:

2. Interactive model


 $\mathcal{M}_2:\mathsf{RT}\sim\mathsf{format}+\mathsf{size}+\mathsf{format}\cdot\mathsf{size}$

Campbell & Fugelsang (2001) - evidence for interactive account in addition verification

Format effect larger for large problems (+689 ms) than for small problems (+477 ms)

Present work – large-scale replication of Campbell & Fugelsang (2001)

Analytic workflow:

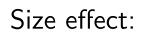
- 1. Remove errors (7.5%) and long trials (0.7%)
- 2. Separate RTs into $2\times 2\times 233$ design cells
- 3. Collapse design cells (median)
- 4. Submit medians to Bayesian RM ANOVA in JASP
 - (a) random intercepts only (Rouder et al., 2012)
 - (b) random intercepts and slopes (van den Bergh et al., 2022)

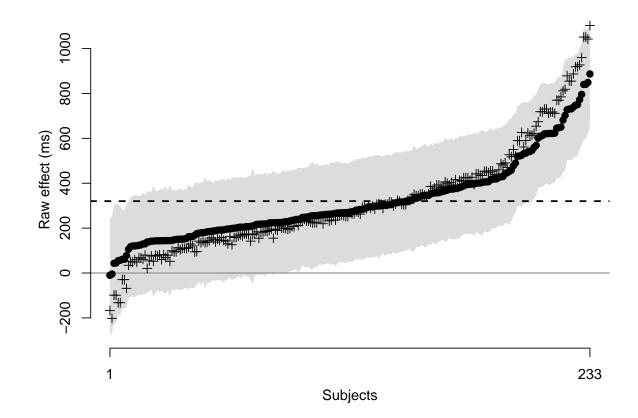
• Older JASP versions ($\leq 0.16.2$) specify random intercepts only

$$Y_{si} = \beta_0 + S_{0s} + \beta_1 X_1 + \varepsilon_{si} ,$$

$$S_{0s} \sim \mathcal{N}(0, \tau_{00}^2) ,$$

$$\varepsilon \sim \mathcal{N}(0, \sigma^2) .$$

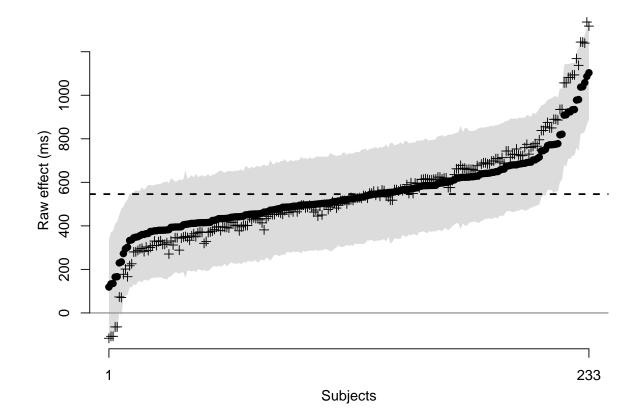

This model specification assumes no subject-level variability in the main effects.


• Newer JASP ($\geq 0.16.3$) versions includes random slopes on the main effects.

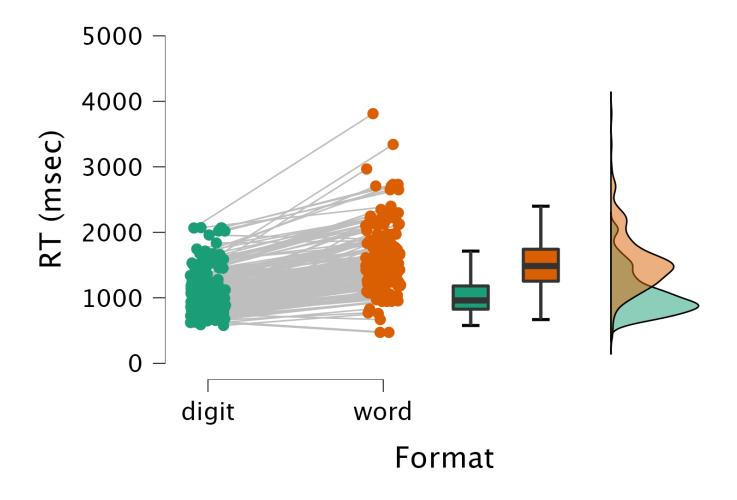
$$Y_{si} = \beta_0 + S_{0s} + (\beta_1 + S_{1s})X_1 + \varepsilon_{si} ,$$

$$(S_{0s}, S_{1s}) \sim \mathcal{N}\left(0, \begin{bmatrix} \tau_{00}^2 & \rho\tau_{00}\tau_{11} \\ \rho\tau_{00}\tau_{11} & \tau_{11}^2 \end{bmatrix}\right) ,$$

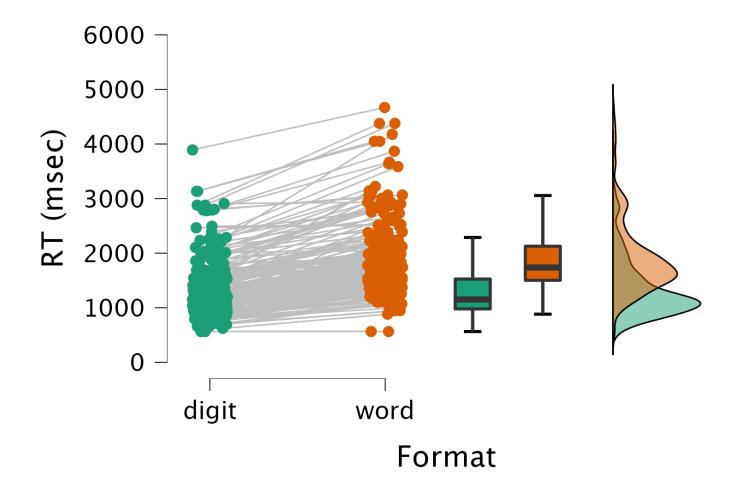
$$\varepsilon \sim \mathcal{N}(0, \sigma^2) .$$

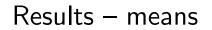

This model specification adds subject-level variability in the main effects.

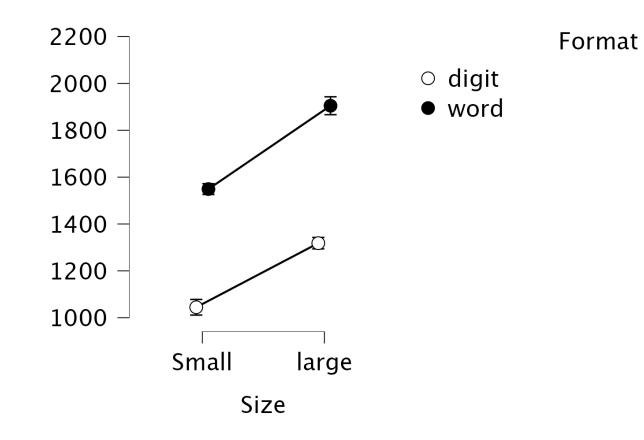
- Is it reasonable to assume that there are individual differences in the main effects?
- What is the structure of individual differences in size effect? Format effect?
 - use method of Haaf & Rouder (2017) to build hierarchical Bayesian model of individual differences in each of the main effects.
 - see also Faulkenberry & Bowman (in press, J. of Cog. Psy.)



Format effect:




- Is it reasonable to assume that there are individual differences in the main effects?
 - Yes!
 - so we use the updated RM ANOVA (van den Bergh et al., 2022)
 - Warning it takes a long time, especially with N=233!


Results – format effects for small problems

Results – format effects for large problems

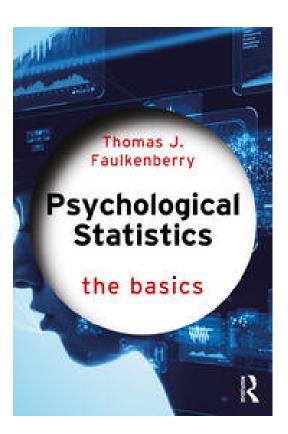
Results – Bayesian model comparison

Models	$Pr(\mathcal{M})$	$Pr(\mathcal{M} \mid data)$	$BF_{\mathcal{M}}$	BF_{10}
size + format + size * format	0.20	0.999	8443	1
size + format	0.20	0.00047	0.002	0.00047
format	0.20	≈ 0	≈ 0	≈ 0
size	0.20	≈ 0	≈ 0	≈ 0
Null model (incl. subject and random slopes)	0.20	pprox 0	≈ 0	≈ 0

The only model which increases model odds is the one containing a size \times format interaction.

Almost all posterior mass is placed on the interaction model.

Results – Bayesian model averaging


Effects	$\Pr(inc)$	Pr(inc data)	BF_{inc}
size	0.60	≈ 1	∞
format	0.60	≈ 1	∞
size * format	0.20	0.999	8443

The observed data are 8443 times more likely under models including the interaction term than under models which exclude it.

Take home:

- our data support an interactive model of mental arithmetic, where effects of surface penetrate downstream to directly affect processes in calculation.
- qualitative individual differences in problem size effect
 - data 221 times more likely under model where size effects are *unconstrained*
- quantitative individual differences in format effect
 - data 6.6 times more likely under model where size effects are *strictly positive*
- Bayesian RM ANOVA models should include random slopes
 - omitting these slopes attenuates evidence for size \times format interaction (i.e., ${\rm BF}_{\rm inc}({\rm interaction})<3)$

Shameless plugs!

I am hiring two tenure-track faculty members for Fall 2023!

Thank you!

- slides available at https://tomfaulkenberry.github.io
- Twitter/Mastodon: @tomfaulkenberry@mathstodon.xyz
- Email: faulkenberry@tarleton.edu