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ABSTRACT 

Bowman, Kristen A. Response time modeling for the size congruity effect: Early vs. late 

interaction. MASTER OF SCIENCE (Applied Psychology) May 2020, 53 pp., 1 table, 7 

figures, 59 titles. 

The size-congruity effect occurs when numerical magnitude interferes with 

judgments of physical size. Various accounts propose that this interference is either 

encoding-related or decision-related. To discriminate between these accounts, I used a 

class of mathematical models (ex-Wald, shifted Wald and EZ-Diffusion) to index the 

underlying cognitive processes via estimates of drift rate, response threshold, and non-

decision time. I administered a single-digit physical comparison task and manipulated 

congruity and measured response times. First, I found that congruent trials were 

processed faster than incongruent trials, which is indicative of the size-congruity effect. 

Next, via the mathematical models, I found that the drift rate for incongruent trials was 

smaller than for congruent trials, indicating that incongruent trials had a faster rate of 

information uptake. The response threshold for incongruent trials was larger than for 

congruent trials, indicating that for incongruent trials more information needed to be 

accumulated before responding. Critically, there was no difference for non-decision time  

between incongruent and congruent trials. This combination of results provides support 

for a late interaction account of the size-congruity effect, shedding further light onto 

decision-related models of number processing. 
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CHAPTER I 

INTRODUCTION TO THE SIZE CONGRUITY EFFECT 

The curious nature of decision making has stumped cognitive psychologists over 

the past several decades. One method of studying this complex process is to limit the 

stimulus sets to basic units of information (e.g., words, letters, numbers, etc.). A well-

known procedure for studying cognitive processing is the Stroop task (1935), in which 

participants were asked to name the color in which words were presented. There are two 

types of trials: congruent trials, where font color and printed word lead to the same 

decision (e.g., “purple” in purple font) and incongruent trials, where font color and 

printed word lead to different decisions (e.g., “purple” in green font). Even though this is 

a seemingly simple task, the manipulation of color font induces a lag in response times 

for incongruent trials compared to congruent trials, which is known as 

Stroop interference (MacLeod, 1991; Lindsay & Jacoby, 1994). This interference 

indicates that incongruent trials require a different type of cognitive processing than 

congruent trials.  

The peculiar finding that there is an interference in processing for incongruent 

trials, but not for congruent trials, started a curiosity among researchers to investigate 

more than colors. For example, the Numerical Stroop task is an excellent vehicle for 

investigating the underlying mechanisms of number processing. This task follows the 

design of the Stroop task, but utilizes Arabic number digits. Typically, participants are 

presented with two single-digit number symbols where one symbol is physically larger 

than the other. Participants are instructed to select the physically larger symbol and 
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ignore numerical magnitude (Santens & Verguts, 2011; Schwarz & Heinze, 

1998; Reike & Schwarz, 2017).  

The task is comprised of two types of trials: congruent trials, where the physically 

larger symbol also has a larger numerical value (e.g. 3 vs 7) and incongruent trials, where 

the physically larger symbol has a smaller numerical value (e.g. 3 vs 7). For congruent 

trials, where physical size and magnitude lead to the same decision, participants are able 

to respond rather quickly. However, for incongruent trials, where physical size and 

magnitude lead to different decisions, participants require more time before a response is 

finalized. This interference is known as the size-congruity effect (Besner & Coltheart, 

1979). Furthermore, this robust effect demonstrates that while magnitude is not needed to 

complete the task at hand, participants still access magnitude (Algom, Dekel, & Pansky, 

1996; Besner & Coltheart, 1979; Fitousi & Algom, 2006; Henik & Tzelgov, 

1982; Sobel, Puri, & Faulkenberry, 2016; Sobel, Puri, Faulkenberry, & Dague, 

2017; Reike & Schwarz, 2017;  Risko, Maloney, & Fugelsang, 2013).  

Rather than questioning “if” this robust effect occurs, the question has become 

“how” it occurs and what mechanisms are utilized during the decision-making process. 

There are two prevalent accounts of processing for the size-congruity effect: relative 

speed of processing and automaticity. The relative speed of processing hypothesis 

assumes that when processing stimulus characteristics that vary along multiple 

dimensions (e.g., physical size, numerical value), parallel processing is occurring at 

different speeds for the multiple dimensions. Due to the limited capacity of working 

memory, only one of the two dimensions can take priority in processing (Rouder, Morey, 

Cowan, Zwilling, Morey, & Pratte, 2008; Santens & Verguts, 2011). Therefore, task 
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instructions dictate which dimension will take priority in processing (MacLeod, 1991). 

Through the lens of the speed-of-processing hypothesis, the size-congruity effect occurs 

because identifying the physically larger number is slowed due to the attention that is 

required for processing magnitude. However, this interpretation only makes sense for the 

incongruent trials, due to the lack on interference in congruent trials.   

On the other hand, the second model for the size-congruity effect is automaticity, 

which is typically associated with low level cognitive processing. In other words, this 

type of processing only requires minimal amounts of energy or effort in processing (e.g., 

numbers, letters, time, spatial location, etc.). In particular, processing magnitude is 

considered to be automatic. Furthermore, Walsh (2003) argued that time, space, and 

quantity are similar domains that stem from one magnitude comprehension system and 

are linked by certain mechanisms for processing, even though the literature has 

investigated them separately. Each of these domains are essential in processing and when 

analyzed together are known as A Theory of Magnitude (ATOM). The advantage to this 

theory is that it brings together three domains that are indicative of common processing 

mechanisms, which are used to make fast decisions about the environment. Through the 

lens of automaticity, the size-congruity effect occurs because automatic processing of 

congruent trials should occur rather quickly. However, incongruent trials are presumably 

slower because they require more effortful processing than congruent trials.   

In contrast to automatic processing, effortful processing is associated with high 

level cognitive processing. In other words, this type of processing requires relatively high 

amounts of energy through rehearsal and elaborative processing (e.g., details, imagery, 

mnemonic techniques, etc.; Hasher & Zacks, 1979). Through consistent practice and 
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mental mapping, people are able to internalize input and produce an output with more 

ease (Sohen, Servan-Schriber, & McClelland, 1992). Through the lens of effortful 

processing, the size congruity effect occurs because for incongruent trials more time is 

required to produce a response than for congruent trials.   

While the surprising nature of the size-congruity effect can be demonstrated in the 

lab, there are real world implications for decision making. Within numerical decision-

making tasks there are two different judgments that occur at the same time, but ask two 

different questions. Judgments of physical size ask “how much?” and judgments of 

magnitude ask “how many?” For example, when people are asked to guess how many 

pieces of candy are in a jar, both types of judgments can be used. For physical size, 

people will assess the volume of the jar to produce an answer. Whereas for numerical 

magnitude, people will make a judgment based on numerosity to produce an answer 

(Walsh, 2003). Overall, one of the main goals for cognitive psychology is to discover the 

underlying mechanisms of magnitude comprehension (Risko, Maloney, & Fuglsang, 

2013). In the context of the size-congruity effect, automatic processing causes 

participants to go “against the grain” of what information is automatically accessed 

(MacLeod, 1991). Thus, the size-congruity effect is able to be detected. The size 

congruity effect contains rich information about decision making and information 

processing.  

An Early vs. Late Interaction Account  

While the size-congruity effect is robust, researchers have found conflicting 

evidence as to where the locus of the interference in processing 

occurs. Santens and Verguts (2011) were the first to frame the debate as follows; the size 
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congruity effect stems from either the input level of representational overlap or the output 

level of response competition. Thus, there are two competing models for the temporal 

location of the interference; an early interaction account and a late interaction account 

(Santens & Verguts, 2011). An early interaction account suggests that the relative delay 

from incongruent trials occurs at the encoding stage; see Figure 1.A. During this stage, 

participants encode both physical size and numerical magnitude into an analog 

representation and the processing of information continues in a serial fashion until the 

appropriate response is activated. Participants may only process one unit at a time before 

proceeding to the next decision (Townsend & Ashby, 1983). Thus, the interference 

occurs at the initial stages of processing.   

On the other hand, a late interaction account suggests that the interference occurs 

at the decision stage; see Figure 1.B. In contrast to an early interaction account where 

there is only one merged pathway, in a late interaction account there are two separate 

pathways for numerical input and physical input. In other words, once the input is 

internalized, the two separate channels move to numerical representation and physical 

representation. During this stage both channels will activate “subresponses.” When these 

two subresponses are in agreement, such as in congruent trials, processing can occur 

rather quickly. However, when the two subresponses are in disagreement, such as in 

incongruent trials, there is a relative slowdown in processing (Santens & Verguts, 2011; 

Schwarz & Heinze, 1998). After the information has passed through the two 

representational channels, the information goes to the decision stage and finally to output. 

Thus, because there is an interference of physical size and magnitude at the response 

stage, there must be parallel processing. In other words, the two separate pathways 
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activate two different decision codes, which will compete in the decision stage and cause 

a delay in response time. Additionally, these two decisions are not necessarily made at 

the same time due to one unit requiring more processing than the other (Townsend & 

Ashby, 1983). The duration of this competition feeds forward into the response activation 

stage, which causes the relative delay in processing of incongruent trials (Faulkenberry, 

Cruise, Lavro, & Skaki, 2016).  

 

Figure 1. Illustration of an Early interaction account (A) and a Late interaction account 

(B). Illustration adapted from Santens and Verguts (2011).  
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Evidence for the Competing Accounts  

Both an early interaction account and a late interaction account have received 

support in the literature. Schwarz and Heinze (1998) performed the size congruity task 

and measured response time data and event-related potentials (ERPs). They argued that 

the dimensions of physical size and numerical value are extracted into parallel channels 

and then only the prominent portions of the dimensions must be integrated into one 

representation in order to make a decision. They found that congruent trials were 

processed faster than incongruent trials. One conclusion is that incongruent trials require 

more effortful processing than congruent trials because participants must consider both 

answer choices. Contrary to this conclusion, Schwartz and Heinze 

(1998) monitored ERPs and found no indication of activation for incorrect responses 

in incongruent trials. Thus, they proposed that the locus of interference is in the early 

portion of the decision-related process.  

 On the other hand, Cohen Kadosh and Henik (2006) performed a digit 

comparison task using fMRI machines. They argued that if a late interaction account is 

accurate, researchers should see higher motor activity for incongruent trials than 

congruent trials due to parallel processing. Cohen Kadosh and Henik (2006) found that 

when they presented participants with a digit comparison task where the numerical 

distance was 5, there was higher workload. Thus, they concluded that because of the high 

motor activity, participants must be using parallel processing. However, they concluded 

that depending on the nature of the task, participants can change their strategy to produce 

an answer.   
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In line with the evidence for a late interaction account, Faulkenberry, 

Cruise, Lavro, and Shaki (2015) performed the size-congruity task with computer mouse 

tracking, which is considered to be reflective of the physical behavior associated with the 

decision-making process. The signatures of the mouse trajectories showed that 

incongruent trials were significantly attracted toward the incorrect response. Thus, 

indicating that participants consider the incorrect response for a large portion of the 

response time. This leads to the conclusion that there must be parallel processing of the 

dimensions of physical size and numerical value (see also Santens & Verguts, 2011).   

Mathematical Models of Decision Making  

Traditional hypothesis testing generally utilizes only the mean and standard 

deviation of response time curves. However, formal mathematical models allow for the 

entire shape of the distribution to be utilized, which helps to shed light onto the 

underlying decision-related processes. The purpose of mathematical modeling is to 

further investigate theories and laws that are not directly observable.   

Maximum Likelihood Estimation  

 One approach to gain insight to the underlying cognitive processes of decision-

making is to fit probability distributions to model the observed reaction times. A 

probability distribution is defined with specific parameters. One technique to estimate 

these parameters is maximum likelihood estimation (Myung, 2003). In addition to the 

practical uses of maximum likelihood estimation, there are also theoretical advantages: 

(1) each estimated parameter is sufficient to yield complete information about the 

underlying distribution; (2) each parameter is consistent with large enough samples, that 

is; the estimated parameters can get arbitrarily close to the true parameter value; (3) the 
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estimation process is efficient because it produces the lowest-possible variance 

asymptotically; and (4) regardless of specified density function, the parameters can be 

transformed from one parameter formula to another.   

In general, the purpose of conducting maximum likelihood estimation is to find 

parameter estimates that are the most likely given a set of observed data. It is important to 

note that likelihood is not the same as probability. Though they can have similar 

interpretations, the presentation is slightly different. That is:  

,  

where x represents the observed data and θ represents specific parameter values. This 

equation says that the likelihood function and the probability density function are related, 

but two separate functions. The probability density function f provides probabilities of 

observed data given specific parameter values. On the other hand, the likelihood 

function L provides likelihoods of parameter values given observed data (Myung, 2003). 

In other words, probability distributions are conditioned on parameters, but likelihood 

functions are conditioned on data. Also note that probability functions have a scale of 0 to 

1, whereas likelihood functions do not have such restriction.   

Gaussian and Ex-Gaussian  

The first step in maximum likelihood estimation is selection of the likelihood 

function. One typical selection is the normal distribution, also known as the Gaussian 

distribution. The normal distribution provides a symmetric probability distribution. 

However, the symmetry of the normal distribution does not reflect the true nature of 

response times, which have a pronounced positive skew (Dawson, 1988; Whelan, 2008). 

That is, response time distributions tend to have higher density on the left that gradually 
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decreases over time and a long positive tail on the right. One potential probability 

distribution that exhibits this positive skew is the ex-Gaussian distribution (Luce, 

1986; Rieger & Miller, 2019; Whelan, 2008). The ex-Gaussian distribution is an 

exponentially modified Gaussian curve, meaning that it contains a normal component 

with an exponential rate of decay. The density function for the ex-Gaussian is:  

,  

where μ represents the mean, σ represents the standard deviation of the normal 

component, and τ represents rate of the exponentially distributed tail.  

Model selection is vital as varying models can lead to different interpretations. 

Specifically, the ex-Gaussian distribution is a likelihood function, rather than a 

probability distribution. Hervey et al. (2006) were interested in comparing 

neuropsychological performances for children with and without ADHD. When fitting a 

Gaussian distribution, they found that children with ADHD had significantly slower 

response times than the children without ADHD. However, after fitting an ex-Gaussian 

distribution, they demonstrated that children with ADHD had significantly faster 

response times for the normal component of the response distribution. More interestingly, 

for the exponential component τ, they modeled a fatter tail, indicating that children with 

ADHD exhibited a greater number of response times that were beyond their mean 

performance than the children without ADHD. Thus, they concluded that children with 

ADHD are not necessarily slower than children without ADHD, rather they are more 

prone to attention lapses on some trials (Hervey et al., 2006). The portion of trials with 

attention lapses should not be the data used to draw severe conclusions. The benefit of the 
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ex-Gaussian distribution is that such differences in groups can be analyzed separately in 

order to gain further insight (see also Kobor et al., 2015, for a similar finding).  

Another example of the applicability of the ex-Gaussian model came from 

Penner-Wilger, Leth-Steensen, & LeFevre (2002), who were interested in comparing 

mental arithmetic differences across cultures. Specifically, they were testing the problem-

size effect (i.e., larger problems, such as 7 x 8 or 9 + 7, require more time to process than 

smaller problems, such as 3 x 3 or 3 + 2) between Chinese and Canadian students. 

Through fitting an ex-Gaussian distribution to their data, they found that for the Chinese 

group, the effect occurs in the normal parameter μ, whereas for the Canadian group, the 

effect occurs in normal parameter μ and the exponential parameter τ. This indicated that 

for the Chinese group, the locus of the effect is in memory retrieval, whereas for the 

Canadian group, the locus of the effect occurs in both memory retrieval and 

through nonretrieval processing.   

While these examples provide further insight into group differences, researchers 

have been tempted to infer that these parameters directly reflect underlying cognitive 

processes. For example, Hohle (1965) claimed that μ reflects the motor-related portion of 

the decision process and that τ reflects the cognitive processes (Frigs, 2018; Hohle, 

1965). Yet, there has been very little agreement on the exact process that each parameter 

reflects. Therefore, these parameters should be viewed as solely a descriptive tool 

(Matzke & Wagenmakers, 2009; Schwarz, 2001). While the reporting of descriptive 

parameters can be valuable, there are other tools that can enhance the inferences made 

about a given hypothesis.  
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Wald Distributions 

As mentioned earlier, the major limitation of the Gaussian and ex-Gaussian 

distributions is that they are limited to descriptive statistics that are purely descriptive 

information about the distribution. However, our goal is to provide information about the 

unobservable, latent processes involved in decision making. One method to analyze the 

specific components of decision making is the use of accumulator models (Link, 1975), 

which are mathematical models that represent the decision-making process as a random 

walk towards a fixed response boundary. These models represent decision making as the 

process of gathering noisy partial information over time until enough information is 

accumulated to make a decision (Schwarz, 2001). The purpose of using an accumulator 

model is to increase accuracy by averaging out random fluctuations in trial-by-trial 

decisions (Heathcote & Hayes, 2012). Typically, accumulator models have the same 

three basic parameters that index cognitive processes: quality of presented information, 

amount of information uptake required to trigger a response, and nondecision time 

(Anders, Alario, & Maanen, 2016).  

One such accumulator model is the Wald model, which is also known as the 

Inverse Gaussian. The Wald is a distribution of stopping times for a continuous diffusion 

process (i.e., continuous random walk) with a fixed boundary. The density function for 

the Wald is given by:  

,  

where x is the distribution of first passage times, γ is the drift rate, and α is response 

threshold. While this can be a powerful modeling tool, it is not yet suitable for response 

time distributions because the curve begins at zero on the x-axis. This is problematic 
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because response times cannot be zero. Furthermore, this puts a great deal of weight on 

very small response times. Response times below 100 milliseconds are proven to be 

inaccurate representations of processing (Luce, 1986). There are two solutions to this 

problem: (1) similar to the ex-Gaussian distribution, we can construct an exponential 

modification of the Wald distribution; or (2) add a constant shift to the distribution.  

The first of these solutions is the ex-Wald (Schwarz, 2001). The ex-Wald model 

is the mathematical combination of the Wald distribution with an exponential tail. In 

other words, the ex-Wald offers a rightward shift that is the convolution of two curves, 

which also allows for the beginning of the curve to not be at zero (Heathcote, 2004; 

Schwarz, 2001). First, the cumulative distribution function (CDF), F, is given by:  

,  

where  represents drift rate which is the data-driven component of the task, σ represents 

a scaling parameter: without loss to generality, this is set to 1, α represents response 

criterion, and Φ is the cumulative standard normal distribution function. From there, the 

density function of the ex-Wald is given by:  

,  

where γ represents drift rate and k is defined as  

.  

The ex-Wald is more theoretically sound than the ex-Gaussian as a model for decision 

making (Schwarz, 2001), but there are only a couple of studies that utilize this 

mathematical density function due to its complexity; thus, it needs further research 

(Rieger & Miller, 2019).  
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On the other hand, the shifted Wald has a constant shift of the entire distribution, 

which is far easier to perform than the ex-Wald (Anders, Alario & Van Maanen, 2016). 

The density function for the shifted Wald is given by:  

,  

where γ represents drift rate, α represents response threshold, and θ 

represents nondecision time. The major benefit of the shifted Wald distribution is that 

each of these parameters can be interpreted as specific processing stages of the decision-

making process. The level of drift rate exhibits the quality of the information presented 

(ambiguous, unambiguous), response threshold reflects the caution to the response 

(conservative, liberal), and the amount of time required for the nondecision demonstrates 

the speed of encoding and motor response (fast, slow) (Anders, Alario & Van Maanen, 

2016) (see Figure 2).  

  

Figure 2. The shifted Wald as a cognitive model, describing RT as the time for an 

accumulator to drift toward and hit a single boundary α at rate γ = 2.0. 
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The nondecision time θ = 0.15 represents the component of RT which is not due to this 

accumulation process. The solid black line represents the accumulator for a single trial, 

whereas the dashed upper curve represents the shifted Wald distribution formed by 

collecting RTs for many such trials.   

The shifted Wald model allows for direct interpretations of response time 

distributions. Faulkenberry (2017) utilized this model to investigate the independence of 

encoding and calculation processing mental arithmetic. The manipulations in this 

experiment were problem size (small, large) and problem format (digit, words). By using 

the shifted Wald, Faulkenberry (2017) found that drift rate was affected by both problem 

size and format. However, response threshold and nondecision time were generally only 

affected by problem format, indicating that problem format impacts the calculation 

process. This helped to provide evidence that in mental arithmetic problems, the 

encoding variables (i.e., problem format) interacts with the calculation process (Campbell 

& Fugelsang, 2001; Frampton & Faulkenberry, 2019).   

In a similar study, Faulkenberry, Vick, and Bowman (2018) fit response times 

from a size congruity task to the shifted Wald model. They were interested in 

investigating the locus of the interference that the size congruity task induces. They found 

a difference between congruent trials and incongruent trials for the decision related 

parameters: drift rate γ and response threshold α. Congruent trials had a higher drift rate γ 

than incongruent trials, which indicated that congruent trials are more unambiguous than 

incongruent trials. Congruent trials had a lower response threshold α than incongruent 

trials, which indicated that congruent trials induced a more liberal than incongruent trials. 

Critically, there was no difference in nondecision time θ, which is the parameter related 
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to encoding. Thus, Faulkenberry et al. (2018) interpreted this finding as evidence that the 

interference of the size-congruity task occurs later in the decision stage of processing, 

rather than early in the encoding stage of processing.  

EZ-Diffusion Model 

The previous distributions are single boundary accumulator models, which have 

one response threshold. Because there is only one threshold, these distributions can only 

utilize the correct responses. Thus, response errors must be excluded from analysis. This 

is problematic because errors have the potential to hold rich information about the 

decision-making process. Yet, for the size congruity effect, there are two output answer 

choices, which yields the possibility for fitting errors and nonerrors. Therefore, 

researchers have used diffusion models to account for situations that lead to multiple 

decisions. The standard diffusion model was created by Ratcliff (1978), in which he 

provided a tool to mathematically fit response time data to seven parameters. These 

parameters are well known to be reflective of cognitive processes (Matzke, 

Wagenmakers, 2007; Ratcliff, Thapar, & McKoon, 2001; Ratcliff & Rouder, 

2000;  Wagenmakers, Ratcliff, Gomez, & McKoon, 2008; Voss, Rothermund, & Voss, 

2004).  

Since then, researchers have found that while Ratcliff’s (1978) diffusion model 

provides vast information about the response time distributions, fitting the model is very 

difficult. Thus, for simplicity, researchers have restricted the parameters to only three: 

boundary separation (response conservativeness), drift rate (the quality of information), 

and nondecision time (motor processes) (see Figure 3). This simplified diffusion model is 

known as the EZ-Diffusion model (Wagenmakers, Van Der Maas, & Grasman, 2007).  
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However, it is important to note that fitting the EZ-Diffusion model is 

fundamentally different from than maximum likelihood estimation. The EZ-Diffusion 

model is fit by simple mathematical formulas to summaries response time data. This 

process is described below.   

1. First, the drift rate is calculated through the following equation:  

,  

where Pc is the proportion of correct decisions, s = 0.1, and VRT is the variance 

of the response times for correct decisions. The logit function is defined as  

.  

2. After the drift rate has been determined, the boundary separation is determined. It 

is given by  

.  

3. Following the calculation of drift rate and boundary separation, mean decision 

time (MDT) is calculated as follows:  

.  

This is a vital step in order to calculate nondecision time. Response times are equal to the 

sum of the MDT and the nondecision time:  

.  
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Thus, by subtracting MDT from the mean response time for correct decisions (MRT), the 

remaining amount will be considered the nondecision time (Wagenmakers et al., 2007), 

denoted Ter. That is,  

.  

While the EZ-Diffusion model is relatively new, this model provides 

estimates about the unobservable variables: drift rate, response threshold, 

and nondecision time. Wagenmakers and colleagues (2007) note that Ratcliff’s diffusion 

model is not to be replaced by the EZ-Diffusion model, but rather is another tool for 

researchers to model response time data. If the goal is to study the relationship between 

correct and incorrect response times, them the Ratcliff diffusion model is the optimal 

tool. However, if the goal is to create estimates for unobservable variables, then the EZ-

Diffusion model is the optimal tool.  

 

Figure 3. The EZ-diffusion model from “An EZ-diffusion model for response time 

and accuracy.” by Wagenmakers, E.-J., Van Der Maas, H. L. J., & Grasman, R. P. P. P., 

2007, Psychonomic Bulletin & Review, p. 8. Reprinted with permission.  
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The Present Study 

The purpose of the present study was to provide evidence for either an early or a 

late interaction account of the size-congruity effect. I fit the observed response times of 

the size-congruity task to four different mathematical models. Based on the calculated 

parameter estimates of each model, inferences were made about the underlying cognitive 

processes. The distributions of response times were used to gain insight onto the nature of 

the size-congruity effect.  

I predicted the following:  

1. For the ex-Gaussian model, the normal components μ, σ are believed to be 

reflective of the retrieval process. However, the exponential component τ is 

thought to be reflective of the decision-making process. If there is a notable 

horizontal rightward shift of the normal component between incongruent trials 

and congruent trials, then I can infer that the interaction occurs early in the 

decision-related process. However, if there is a notably a fatter tail for 

incongruent trials than congruent trials, then there is evidence for a late 

interaction model.  

2. For the ex-Wald, if there are notable differences in the tail between incongruent 

and congruent trials, I can infer that the interference occurred in the encoding 

stage. This would be is evidence for an early interaction model. However, if the 

impact of congruency is in the Wald portion of the curve γ and α, then I can infer 

that the interference occurred in the final decision stage. This would be evidence 

for a late interaction model.  
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3. For the shifted Wald, the parameters α and γ of the curve are thought to be 

reflective of the decision-related process. If there is a notable difference 

in nondecision time between incongruent and congruent trials, I can infer that the 

interference occurred in the encoding stage. This would be evidence for an early 

interaction model. However, if there are notable differences between α and 

γ, but no difference in nondecision time θ, I can infer that the interference is 

occurring in the final decision stage. This would be evidence for a late interaction 

model.   

4. For the EZ-Diffusion model, the predictions of the parameter estimate differences 

are similar to the shifted Wald. Additionally, even though participants commit 

very view errors overall (Wagenmakers, et al., 2007), I can test whether errors are 

systematically slower or faster than correct responses.   
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CHAPTER II  

METHOD 

Participants  

I recruited 53 Tarleton State University students to participate in this experiment 

(20 males, 33 females, mean age 19.45 years, SD = 1.44). Students were recruited and 

offered partial course credit for volunteering. In order to keep participant confidentiality, 

participants were given an identification number and the data that was collected referred 

this number. Furthermore, only the participant identification number was used in data 

analysis.  

Stimuli and Procedure 

Participants were presented with pairs of single-digit Arabic numerals chosen 

from the stimulus set (2, 3, 4, 5, 6, 7, and 8). In order to balance numerical distance 

between numerals, the following 12 pairs were selected: 2-3, 3-4, 4-5 (distance 1); 2-4, 3-

5, 4-6 (distance 2); 2-5, 3-6, 4-7 (distance 3); 2-6, 3-7, 4-8 (distance 4). The primary 

manipulation was the font size of the stimuli. The physically larger digits were presented 

in 36-point font, whereas the physically smaller digits were presented in 28-point font 

(see Figure 4).   

Thus, I had two different conditions, congruent trials and incongruent trials. For 

congruent trials, the physical size and magnitude led to the same decision (e.g., large font 

and large magnitude). For incongruent trials, the physical size and magnitude led to 

different decisions (e.g., large font and small magnitude).   

Each pair was presented in different left-right orders and different font 

configurations (smaller/left; larger/right; or smaller/right; larger/left). In total, there were 
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12 pairs x 2 congruity conditions x 2 orders x 2 font configurations = 96 experimental 

trials per block. Participants completed 4 blocks for a total of 384 trials per participant. 

The completion time for each participant was approximately 10 minutes.   

 

Figure 4. Example stimuli in a physical size comparison task. The left panel depicts a 

congruent trial, where the physically larger number (8) is also the numerically larger 

digit. The right panel depicts an incongruent trial, where the physically larger number (2) 

is the numerically smaller digit.  

 

For this experiment I used the OpenSesame software package (Mathôt, Schreij, 

& Theeuwes, 2012) and ran it on a Lenovo Thinkpad X220 computer with a 12.5 inch 

display at a resolution of 1366 x 768 pixels. I used a standard computer keyboard for 

responses, in which the “A” key represented the selection of the leftmost number and the 

“L” key represented the selection of the rightmost number. Prior to the start of the 

experiment, students were instructed to select the physically larger of the two numbers 

that was presented on the screen. Additionally, participants were instructed to answer as 

quickly and as accurately as possible.  
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Each trial started with a fixation point that was displayed for 500 milliseconds. 

Immediately after, the stimulus pair was presented. Each pair remained on the screen 

until a response was given. If participants selected the correct response (the physically 

larger number), they were given no feedback and the next trial began. However, if 

participants selected the incorrect response, they were given a red “X” for one second and 

the next trial began immediately after (see Figure 5).   

 

Figure 5. Sequence of experimental trials.   

 

Upon completion of the experimental trials, participants were given a short 

demographic survey and thanked for their participation. All anonymous response time 

data was archived to GitHub, under a “born-open” data protocol (Rouder, 2015). Data 

sets that are archived in this manner are known as born-open data because they are 

automatically uploaded nightly and time stamped. Some of the main advantages of using 
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born-open data storage are that (1) data backup is automatic; (2) it provides simplified 

sharing of data between labs and collaborators; and (3) it increases long-term availability 

of data. Therefore, the data collected from this experiment were publicly stored in a 

repository. However, the data were anonymous, and participants were informed that their 

anonymous data were open to the public via GitHub.  

Analysis Plan  

The response time data for this experiment were fit to a variety of mathematical 

models. After a cleaning procedure to remove errors and extreme outliers, the basic 

workflow for each model was: (1) separation into design cells; (2) maximum likelihood 

estimation; (3) dimension reduction; and (4) Bayesian model comparison.   

1. Separation into design cells. I separated individual response times into 106 

design cells (53 participants x 2 trial types). In other words, I produced a 

factorial combination of 53 participants with 2 trial types each (correct, 

incorrect).   

2. Maximum likelihood estimation. I conducted maximum likelihood estimation 

to produce the 3 parameters for both congruent and incongruent trials. Thus, I 

had a collection of 6 parameter estimates for each participant. Note that the 

EZ-Diffusion model has specific equations that do not include the use of 

maximum likelihood estimation.   

3. Dimension reduction. I acquired 318 parameter estimates (106 design cells x 3 

parameters), which were collapsed into 6 grand mean parameter estimates (3 

congruent, 3 incongruent).   
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4. Bayesian model comparison. I conducted a Bayesian paired samples t-test to 

compare each parameter set by trial type. Instead of using a traditional 

frequentist t-tests, I computed Bayesian t-tests for each parameter estimate 

(Rouder, Speckman, Sun, Morey, & Iverson, 2009). From this, I obtained a 

collection of Bayes Factors, which are likelihood ratios that provide a 

continuous measure of the extent to which the observed data is more likely to 

have occurred under one hypothesis than another (Kass & Raftery, 1995). 

This indexed the support for the two competing hypotheses: 

(1) BF10 represents a Bayes factor in support of the alternative over the null, or 

(2) BF01 represents a Bayes factor in support of the null over the alternative. 

This approach is useful because evidence can be found for either the 

alternative hypothesis or the null hypothesis, which is not something that the 

frequentist framework provides (Wagenmakers, 2007). Finally, for the EZ-

Diffusion model, there was not a cleaning procedure of the response times 

because this diffusion model has two response boundaries for correct 

responses and incorrect responses. However, I followed the same workflow as 

for the other models.  



26 

CHAPTER III 

RESULTS 

Participants completed a total of 20,352 trials. We discarded 636 trials that 

contained an incorrect response (error rate = 3.125%). Further, we removed an additional 

11 trials that were slower than 100 milliseconds and 71 trials that were longer than 2,000 

milliseconds. This cleaning procedure resulted in retaining a total of 19,634 trials (96.47 

% of original trials) for further analysis.  

As previously mentioned, the general analysis plan included four steps. First, the 

response times were separated into design cells (53 participants x 2 trial types = 106 

design cells). Second, each design cell had a distribution of response times, which were 

then given a three-parameter description via one of four different modeling strategies (ex-

Gaussian, ex-Wald, shifted Wald, or EZ-diffusion). This resulted in 318 parameter 

estimates for each modeling strategy. For the third step, these estimates were collapsed 

along subjects, resulting in 3 grand mean parameter estimates for incongruent trials and 3 

grand mean parameter estimates for congruent trials.  Finally, I conducted a Bayesian 

paired-samples t-test (Rouder, Speckman, Sun, Morey, & Iversen, 2009) on each 

parameter pair to obtain Bayes factors (Kass & Raftery, 1995) for various hypotheses 

about the effects of the congruity manipulations. A Bayes factor is defined as the relative 

likelihood of the observed data under two competing hypotheses.  That is, a Bayes factor 

provides a continuous measure of the extent to which the observed data is more likely to 

have occurred under either the alternative hypothesis or the null hypothesis. The notation 

BF10 represents the relative likelihood of the data under the alternative over the null, 
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whereas BF01 represents the relative likelihood of the data under the null over the 

alternative. 

For this study, Bayesian inference is beneficial because it allows for the ability to 

quantify evidence in support of either hypothesis. This gives us the ability to differentiate 

between “evidence of absence” and “absence of evidence”. In traditional hypothesis 

testing, failure to reject the null hypothesis does not provide support for a null effect. 

Such a failure to reject the null leads to ambiguity in the interpretation of the data; either 

there is no effect (evidence of absence) or there is an effect, but we did not detect it (i.e., 

absence of evidence, otherwise known as a Type II error). We just simply do not know. 

Further, traditional hypothesis testing does not give us any index of how well the 

alternative hypothesis predicts our observed data. In contrast, Bayes factors can be used 

to identify which hypothesis is likely correct. For example, a large BF01 is interpreted as 

evidence for the null hypothesis (i.e., evidence of absence). Overall, Bayesian inference 

provides the ability to quantify evidence for either hypothesis, a major benefit over 

traditional hypothesis testing. 

One potential limitation of Bayes factors is that there is no universal standard to 

determine when there is sufficient evidence. Therefore, Bayesian inference has a set of 

guidelines to follow, rather than the strict thresholds of traditional inferential statistics. 

Research guidelines are simply suggestions, not rules (Navarro, Pitt, & Myung, 2004). 

Jeffreys (1961) proposed the following guidelines: 
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Mean Response Times 

First, I analyzed the effect of the congruity manipulation on mean response times. 

As expected, I found evidence for the size congruity effect on mean response times in the 

physical comparison task (see Figure 6). The mean of the response time distribution for 

incongruent trials (M = 620.1, SD = 114.6) was shifted rightward compared to the 

distribution for congruent (M = 554.3, SD = 104.4) trials, indicating that incongruent 

trials required more processing time than congruent trials. This is confirmed by a Bayes 

factor of BF10 = 2.078 x 1017, indicating that the observed data are approximately 2 x 1017 

times more likely under the alternative hypothesis than the null hypothesis. In all, we see 

substantial evidence of a congruity-related increase in mean response times.  
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Figure 6. Distributions of response times (in seconds) as a function of congruity 

(congruent versus incongruent). 

 

Next, I attempted to more fully describe the effects of physical-numerical 

congruity on the distributions of response times. To this end, I fit the distributions in each 

design cell with a class of mathematical models. As mentioned before, I collected 3 

congruent and 3 incongruent parameter estimates for each mathematical model. Through 

Bayesian t-tests, I computed Bayes factors for the competing hypotheses about each 

parameter set. 

Ex-Gaussian Modeling 

The mean values for the mean parameter μ were larger for incongruent trials (M = 

443.6) than for congruent trials (M = 425.3), BF10 = 910.9.  This implies that the normal 

component of the curve was shifted more to the right for incongruent trials than 

congruent trials.  
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The mean values for the standard deviation of the normal component, σ, were 

larger for incongruent trials (M = 57.09) than for congruent trials (M = 46.24), BF10 = 

307.3. This indicates that the distribution of response times for congruent trials were 

more concentrated around the mean compared to incongruent trials.  

For the tail parameter, τ, the mean rate of the exponentially distributed tail was 

larger for the incongruent trials (M = 176.6) than for congruent trials (M = 128.9), BF10 = 

1.21 x 1015. This indicates that incongruent trials have a thicker tail than congruent trials.  

Ex-Wald Modeling 

Previous work with accumulator models (e.g., Faulkenberry et al., 2019) allows 

specific directional hypotheses for each parameter of the accumulator models. Based on 

this past work, we predict that rate of information uptake will be faster for congruent 

trials than for incongruent trials. So, we expect that mean drift rates will be larger for 

congruent trials than incongruent trials (see Figure 7.A). Regarding response threshold, 

we expect congruent trials to require less information before triggering a decision; thus, 

we expect the mean response threshold to be smaller for congruent trials than for 

incongruent trials (see figure 7.B). Finally, the late interaction account of the size 

congruity effect leads us to predict that nondecision parameters should be invariant 

between congruity conditions. Thus, for nondecision time, we expect no difference 

between congruent and incongruent trials (see Figure 7.C). 
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Figure 7. Example of predictions for accumulator models of each parameter as a function 

of congruity (congruent versus incongruent). Figure from “A shifted 

Wald Decomposition of the numerical size-congruity effect: Support for a late interaction 

account.” by Faulkenberry, T., Vick, A., & Bowman, K., 2018,  Polish Psychological 

Bulletin 49(4):391-397. doi: 10.24425/119507  p. 9. Reprinted with permission.   

 

First, we consider the Ex-Wald drift rate. We found that the mean drift rate γ was 

larger for congruent trials (M = 0.4495) than for incongruent trials (M = 0.3808), BF10 = 

147.5. This indicates that the rate of information uptake was faster on congruent trials 

than incongruent trials.  

The mean response threshold for congruent trials (M = 187.9) was not smaller 

than the mean response threshold for incongruent trials (M = 164.5), BF01 = 28.78.  This 

indicates support for a null effect of congruity on response threshold, as the observed data 

were approximately 28 times more likely under the null hypothesis than the alternative 

hypothesis.  

Finally, for the tail parameter of the ex-Wald, the mean for congruent trials (M = 

123.4) was smaller than the mean for incongruent trials (M = 163.8), BF10 = 1.23 x 106.  
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This indicates that for the tail parameter there is a difference between congruent and 

incongruent trials. Previous work on the effects of congruity on nondecision components 

was done in the context of shifts rather than convolution with an exponential tail. Thus, 

we did not have solid predictions about the tail component. As such, the results we 

present here are purely exploratory rather than confirmatory. 

Shifted Wald Modeling 

The mean drift rate γ was larger for congruent trials (M = 0.13) than for 

incongruent trials (M = 0.11), BF10 = 1.97 x 106. This indicates that the rate of 

information accumulation from congruent trials was faster compared to incongruent 

trials. 

The mean response threshold α was only slightly smaller for congruent trials (M = 

39.68) than for incongruent trials (M = 41.28), a difference which was not different from 

0, BF01 = 3.657. That is, the observed data were approximately 4 times more likely under 

the null hypothesis than the alternative hypothesis, giving us positive evidence for a null 

effect of congruity on response threshold. 

Critically, for the mean nondecision time for congruent trials (M = 252.1) was not 

less than the mean nondecision time for incongruent trials (M = 238).  This null effect 

was indexed by a Bayes factor of BF01 = 14.73, indicating that the observed data were 

approximately 15 times more likely under the null hypothesis than the alternative 

hypothesis. This gives us positive evidence for null effect of congruity on nondecision 

time, thus supporting a late interaction account of the size congruity effect. 
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EZ-Diffusion Modeling 

This model follows the same directional hypotheses as the accumulator models. 

However, unlike the previous accumulator models, the EZ-Diffusion model does not 

utilize maximum likelihood estimation for model fitting. As described earlier, this model 

uses a series of equations to estimate drift rate, response threshold, and nondecision time. 

From these estimates, I utilized Bayesian t-tests to compare the mean parameters for 

incongruent trials and congruent trials.  

The mean drift rate γ was larger for congruent trials (M = 0.01102) than for 

incongruent trials (M = 0.009511), BF10 = 1.31 x 1011. This indicates that the rate of 

information accumulation for congruent trials was larger than for congruent trials.  

The mean response threshold α was smaller for congruent trials (M = 5.489) than 

for incongruent trials (M = 6.283), BF10 = 3.21 x 1012. This indicates that participants 

required more information before making a decision on incongruent trials.  

Finally, the mean nondecision time for congruent trials (M = 296.2) was not 

smaller than the mean nondecision time for incongruent trials (M = 282). This null effect 

was indexed by a Bayes Factor of BF01 = 20.41, indicating that the observed data were 

approximately 20 times more likely under the null hypothesis than the alternative 

hypothesis. This strong evidence for a null effect of congruity on nondecision time 

supports a late interaction account of the size congruity effect.  
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Chapter IV 

DISCUSSION 

The purpose of the present study was to use mathematical modeling of response 

times to compare two theoretical models of the size-congruity effect. This size-congruity 

effect is a classic phenomenon in numerical cognition (Besner & Coltheart, 1979; Henik 

& Tzelgov, 1982) that is similar to the well-known Stroop effect. When participants are 

presented with two numbers of differing physical size and are asked to choose the 

physically-larger digit from the pair, an interference effect occurs. People’s responses are 

quite fast when the pair is congruent – that is, when the physically-larger number also has 

the larger number magnitude. For example, when choosing the physically-largest from 2 

versus 8, the physically-larger digit also has the larger numerical magnitude. However, 

when pairs are incongruent, responses are markedly slowed down. In this case, the 

physically-larger digit has the smaller numerical magnitude (i.e., 2 versus 8). Here, the 

comparisons based on physical size and numerical magnitude lead to two different 

decisions, thus reflecting an interference effect. This is remarkable, as the task only 

requires participants to choose the physically-larger stimulus. Conceivably, this task 

could be completed by completely ignoring the semantic information of numerical 

magnitude and simply focusing on the visual template of the stimuli. However, the 

presence of the size-congruity effect is strong evidence that people simply cannot ignore 

this numerical information. Thus, the size-congruity effect is a classic empirical marker 

of the automatic processing of numerical magnitude (Henik & Tzelgov, 1982). 

The size-congruity effect and its tie to automatic processing is of considerable 

interest in a wide array of studies in mathematical cognition. However, my interest in this 
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phenomenon goes beyond focusing on the fact that a simple congruity manipulation leads 

to shorter response times for congruent trials than incongruent trials. Though the effect 

has been demonstrated many times over the past 40 years, there is little agreement over 

why the effect occurs. Early attempts to uncover the cognitive mechanisms behind the 

size-congruity effect led Santens and Verguts (2011) to propose two classes of 

explanations for the interference. The first of these is an early interaction account, where 

the interference occurs at early stages of processing (i.e., encoding) and reflects a shared 

representation of numerical and physical size (e.g., the ATOM theory of Walsh, 2003; 

Townsend & Ashby, 1983). As an alternative, other researchers have proposed theories 

that Santens and Verguts classified as late interaction accounts (Santens & Verguts, 

2011; Faulkenberry et al., 2016; 2019; Schwarz & Heinze, 1998). In these accounts, the 

interference reflects dynamic competition between parallel and partially active responses 

during a decision. As such, these accounts propose that the interference exhibited in the 

size-congruity effect stems not from early shared representations at encoding, but rather 

from interaction of competing decisions during the response. The broader purpose of my 

thesis was to use mathematical modeling to disentangle these two competing accounts of 

the size-congruity effect. 

To investigate these competing explanations for the size-congruity effect, I used a 

class of response time models. A classic model for response times is the ex-Gaussian 

distribution, chosen because of its pronounced positive skew. This distribution contains a 

normal component combined with an exponential distribution, resulting in the similar 

skewed appearance typical with response time distributions. This model contains three 

parameters which various researchers have claimed to be reflective of various underlying 
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cognitive processes (e.g., Hohle, 1965). However, these parameters should be viewed as 

solely a descriptive tool (Schwarz, 2001; Matzke & Wagenmakers, 2009). To gain further 

insight on cognitive processes, I utilized two models based on a Wald distribution, which 

is the distribution of the time required for a continuous diffusion process with positive 

drift to hit a fixed boundary. The Wald distribution provides a mathematical way to 

represent decision-making as a collection of information accumulation processes (Link, 

1975). Specifically, I used two modifications of the Wald distribution for this study – the 

ex-Wald and the shifted Wald – each chosen to more accurately reflect properties of 

response time distributions. The ex-Wald is an exponentially modified Wald distribution; 

the convolution of these two distributions provides a rightward shift so that the 

distribution begins at zero (Schwarz, 2001; Heathcote, 2004). It is important that these 

models do not begin at zero because it is unrealistic for response times to be zero (Luce, 

1986). As such, the ex-Wald is more theoretically sound than the ex-Gaussian model, but 

it is not widely used in the literature, potentially because of its complexity. Therefore, I 

also used the shifted Wald, which mathematically easier to represent than the ex-Wald 

because it is a constant shift of the entire distribution rather than an averaging of two 

curves (Anders, Alario & Van Maanen, 2016).  

From each of these models, I produced parameter estimates for each participant in 

each condition. To calculate each of these parameters for each of the design cells, I used 

maximum likelihood estimation to calculate the most likely parameter values given the 

observed data (Myung, 2003). In total, I collected 6 parameter estimates for each 

participant for each of the three response time models (ex-Gaussian, ex-Wald, and shifted 

Wald). In total, I collected 318 parameter estimates per model, and this collection of 



 37 

parameter estimates was then collapsed into 6 grand means (3 congruent, 3 incongruent). 

Finally, I compared specific hypotheses about the effects of the congruity manipulation 

on each parameter with Bayes factors, which index the relative likelihood of one 

hypothesis over the other.  

This workflow was effective for the first three mathematical models in this study. 

Yet, the ex-Gaussian and the accumulator models can only fit correct responses. The size 

congruity task yields the possibility of correct responses and incorrect responses. While 

the error rate for this experiment was relatively low (error rate = 3.125%) there could be 

rich information about how people process numbers within the error rate portion of the 

data. One solution to “throwing away” potentially beneficial data is to use a dual-

boundary diffusion model (Ratcliff, 1978). Thus, I chose to also use the EZ-diffusion 

model (Wagenmakers et al., 2007). This model is fundamentally different than the other 

models because it does not utilize maximum likelihood estimation. Instead, the EZ-

diffusion model is fit with a set of relatively simple mathematical equations applied to the 

descriptive statistics of the observed data (i.e., mean and variance of the response times 

and the proportion of correct trials). Like the shifted Wald, the parameters of the EZ-

diffusion model are boundary separation, drift rate, and nondecision time. These 

parameters are known to index the underlying cognitive processes of decision making 

(Matzke & Wagenmakers, 2009). 

Each of the mathematical models were used to decompose 53 participants 

response times into a collection of parameter estimates. Note that the overall goal of 

collecting the parameters was to provide evidence for either an early interaction account 

(i.e., interference occurs at the encoding stage) or a late interaction account (i.e., 
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interference occurs at the decision stage). Thus, either the interference occurs in the 

decision components (e.g., drift rate, response threshold) or in the nondecision 

components (e.g., nondecision time). 

Interpretation of Results 

As I expected, I found a large effect of physical-numerical congruity on mean 

response times. Congruent trials were processed faster than incongruent trials. Beyond 

this, I was more concerned with describing the effects of physical-numerical congruity 

on the entire shape of the distribution, rather than focusing simply on the mean response 

time. 

For the ex-Gaussian distribution, I found an effect of congruity for all three 

parameters. The mean parameter μ was smaller for congruent trials than incongruent 

trials. This indicates that the normal component of the curve is more leftward for 

congruent trials than incongruent trials. The standard deviation parameter σ was smaller 

for congruent trials than incongruent trials, showing that there was less deviation around 

the mean for congruent trials than incongruent trials. Finally, the tail parameter τ was also 

smaller for congruent trials than incongruent trials. This indicates that the tail of 

distribution for congruent trials was thinner than the tail of the distribution for 

incongruent trials. Thus, for both the congruent trials and incongruent trials, the 

distribution of response times had a higher density on the left that gradually decreased 

over time with a long positive tail on the right. However, the congruent trials were 

positioned more leftward than incongruent trials (see Figure 6). 

For the ex-Wald, the shifted Wald, and the EZ-Diffusion models, I found a 

consistent effect of the congruity manipulation on drift rate γ, where congruent trials have 
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a faster rate of information uptake than incongruent trials. However, I found some 

inconsistency in my results for response threshold α. That is, that all three models did not 

have effects on response threshold. Recall that this parameter indexes the amount of 

information accumulation required for a response. Previous work has found that that the 

amount of information required for a response is lower for congruent trials is than for 

incongruent trials. However, my outcomes for response threshold were not the same 

across all of the mathematical models in this study. For the shifted Wald, I found 

evidence for a null effect of the congruity manipulation on response threshold. Yet, for 

both the ex-Wald and the EZ-diffusion model, I found the expected negative effect of 

congruity for response threshold α, where congruent trials required less information to be 

gathered before making a decision than incongruent trials. In all, these results support the 

notion that the interference of the size-congruity effect occurs in the decision-related 

parameters. However, does it also occur in the nondecision parameters? 

It turns out that the answer is “no.” For the shifted Wald and EZ-Diffusion models 

I found positive evidence for a null effect of the congruity manipulation on nondecision 

time θ. That is, our data were many times more likely under a hypothesis of no congruity 

effect than they were under a hypothesis where incongruent trials increase the time 

required for nondecision-related processing. As previously mentioned, the parameter of 

nondecision time indexes encoding processes and motor movement of reaction time, not 

the decision-related components of response time. Thus, these data support a late 

interaction account of the size congruity effect.  

In all, I found evidence that the locus of the size-congruity effect occurs in the 

decision-related stages of processing and not in the encoding-stages. This conclusion is in 
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line with several other studies (Faulkenberry et al., 2016; Sobel et al., 2016, 2017). These 

data provide further evidence for the late interaction account that was proposed by 

Santens and Verguts (2011). Furthermore, the present study is novel in its use of 

mathematical modeling to more fully describe response time distributions. It is a common 

practice in psychological science to simply use the mean and standard deviation to make 

inferences about participants’ cognitive abilities. However, by collapsing data into simply 

the mean and the standard deviation, there is rich information lost. On the other hand, 

mathematical models allow for the entire shape of the distribution to be utilized. 

One of the main limitations of my results is the inconsistency in the observed 

congruity effects on response threshold – particularly the surprising null effect in the 

shifted Wald model. Based on the literature, I predicted that the response threshold for 

congruent trials would be less than the response threshold for incongruent trials because 

the information that is needed to be accumulated for congruent trials should be less than 

that for incongruent trials. While this is not the result that I expected, the evidence for this 

null effect was relatively small. This unexpected finding has the potential to be further 

investigated. Additionally, there is a debate in the field about whether these parameters 

accurately reflect the underlying cognitive processes. It is clear for the ex-Gaussian that 

we should avoid the temptation of interpretation (Schwarz, 2001; Matzke 

& Wagenmakers, 2009), but for the Ex-Wald and shifted Wald models, there is evidence 

that the parameters can be interpreted as specific processing stages of the decision-

making process (Schwarz, 2001; Anders, Alario & Van Maanen, 2016). Furthermore, the 

EZ-diffusion model is highly credible as indexing the underlying cognitive functions 

because it is based on Ratcliff’s diffusion model (Matzke & Wagenmakers, 2007; 
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Ratcliff, Thapar, & McKoon, 2001; Ratcliff & Rouder, 2000; Wagenmakers, Ratcliff, 

Gomez, & McKoon, 2008; Voss, Rothermund, & Voss, 2004). I was able to use the EZ-

Diffusion model to confirm my predictions. For the most part, the results from the EZ-

diffusion model matched with those from the ex-Wald and the shifted Wald. The 

similarities of these results between the accumulator models and the diffusion model 

provides further validation of the use of maximum likelihood estimation as a tool to 

uncover information about cognitive processing. 

Another broad implication of this study is that it provides evidence about the 

nature of processing numerical values. As previously mentioned, the instructions for the 

size-congruity task were to only select the physically larger symbol. If participants were 

able to ignore numerical magnitude and only process physical size, then congruent and 

incongruent trials would have the same response time. However, it is clear that 

incongruent trials require more time to process than congruent trials. This is due to the 

cognitive interference that numerical value has on physical size (Besner & Coltheart, 

1979). In other words, I have provided further evidence that processing numerical 

magnitude, even when a task does not require it, is unavoidable.  

One future extension of this study would include the use of other mathematical 

models to investigate the locus of interference in the size-congruity effect. For example, I 

adapted the functions used to fit the shifted Wald from Farrell and Lewandowsky (2018). 

An alternative method of fitting the shifted Wald comes from Anders et al. (2016). It 

would be interesting to compare the outcomes between the two methods to see if there is 

a difference between them. Ideally, these two methods would lead to the same outcome, 

but this would need to be further investigated. 
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Another future study would include investigating this interference in children. 

While many studies have investigated cognitive interference in children (Ashkenazi, 

Mark-Zigdon, Henik, 2009; Ansari, Fugelsang, Dhital, & Venkatraman, 2006; Hervey et 

al., 2006), I would like to implement the use of mathematical modeling of response times. 

The size-congruity task is simple enough that elementary school children could 

participate. This would be a worthwhile project because I have two opposite predictions. 

The first would be that children exhibit more of a congruity effect because they would 

require more response time on incongruent trials than congruent trials due to their limited 

experience with numbers. On the other hand, children may exhibit less of a congruity 

effect (if any) because their limited experience would lead to following the task 

instruction of identifying the physically larger number better than adults. That is, children 

might be resistant to automatic processing. 

From a wider scope, the size-congruity effect is reflective of cognitive processing 

in general. This is just one of many experimental tasks that have the potential to reflect 

underlying cognitive processes. By learning how the process of interference occurs, 

psychologists could also learn how to inhibit the interference. The goal of cognitive 

psychology is to learn about how people process information and this thesis provides 

further insight toward this goal. Furthermore, this study is unique because it brings 

together the fields of psychology and mathematics. There is a major gap between the 

fields of mathematics and psychology, which is counter-intuitive because the field of 

psychological sciences has long utilized mathematical tools (e.g., statistical inference). 

Through the use of mathematical models, I provide evidence that the cognitive 
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interference of the size-congruity event occurs in the decision-related stages. This 

approach could be used to investigate similar phenomena across the field. 
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