Papers and preprints by Thomas J. Faulkenberry

Note: linked titles go to free versions of manuscripts. Links at end of each listing (e.g., DOI) go directly to published source. Please go to published source for citations and/or direct quotes.

    Submitted and/or under revision

  1. Bowman, K., & Faulkenberry, T. J. (2020). Modeling response times in the size-congruity effect: Early versus late interaction. Manuscript submitted for publication.

    In press

  2. Faulkenberry, T. J., & Brennan, K. B. (in press). Computing analytic Bayes factors from summary statistics in repeated-measures designs . To appear in Biometrical Letters

  3. Faulkenberry, T. J. (in press). A note on the normality assumption for Bayesian models of constraint in behavioral individual differences. To appear in Metodoloski Zvezki: Advances in Methodology and Statistics

  4. Brennan, K., Rutledge, M., & Faulkenberry, T. J. (in press). Arithmetic operation signs elicit spatial associations: A confirmatory Bayesian analysis. To appear in Journal of Psychological Inquiry.

    Published

  5. Faulkenberry, T. J. & Bowman, K. A. (2023) Bayesian modeling of the latent structure of individual differences in the numerical size-congruity effect. Journal of Cognitive Psychology, 35(2), 217-232. https://doi.org/10.1080/20445911.2022.2136186

  6. Vogel, S., Faulkenberry, T. J., & Grabner, R. (2021). Quantitative and qualitative differences in the canonical and the reverse distance effect and their selective association with arithmetic and mathematical competencies. Frontiers in Education: Educational Psychology, 6: 655747. https://doi.org/10.3389/feduc.2021.655747

  7. Faulkenberry, T. J. (2021). The Pearson Bayes factor: An analytic formula for computing evidential value from minimal summary statistics. Biometrical Letters, 58(1), 1-26. https://doi.org/10.2478/bile-2021-0001

  8. Nejman, J. & Faulkenberry, T. J. (2020). Implicit priming reveals decomposed processing in fraction comparison. Journal of Psychological Inquiry, 24(2), 17-23. (publisher's website)

  9. Faulkenberry, T. J. (2020). Getting started with Bayesian statistics. Southwestern Psychologist, 13(3). https://rb.gy/rikuim

  10. Faulkenberry, T. J. (2020). Review of "Chi-Squared Data Analysis and Model Testing for Beginners". MAA Reviews. (publisher's website)

  11. Faulkenberry, T. J., Ly, A., & Wagenmakers, E. J. (2020). Bayesian inference in numerical cognition: A tutorial using JASP. Journal of Numerical Cognition, 6(2), 231-259. https://doi.org/10.5964/jnc.v6i2.288

  12. Faulkenberry, T. J. (2020). Estimating Bayes factors from minimal ANOVA summaries for repeated-measures designs. Metodoloski Zvezki: Advances in Methodology and Statistics, 17(1), 1-17. https://doi.org/10.51936/abic6583

  13. Faulkenberry, T. J., Cruise, A., & Shaki, S. (2020). Task instructions modulate unit-decade binding in two-digit number representation. Psychological Research, 84(2), 424-439, doi: 10.1007/s00426-018-1057-9

  14. Faulkenberry, T. J. (2019). Review of "Handbook of approximate Bayesian computation". MAA Reviews. (publisher's website)

  15. Faulkenberry, T. J. (2019). Estimating evidential value from ANOVA summaries: A comment on Ly et al. (2018). Advances in Methods and Practices in Psychological Science, 2(4), 406-409, doi: 10.1177/2515245919872960

  16. Faulkenberry, T. J. (2019). A tutorial on generalizing the default Bayesian t-test via posterior sampling and encompassing priors. Communications for Statistical Applications and Methods, 26, 217-238, doi: 10.29220/CSAM.2019.26.2.217

  17. Frampton, A. R. & Faulkenberry, T. J. (2018). Mental arithmetic processes: Testing the independence of encoding and calculation.. Journal of Psychological Inquiry, 22, 30-35. (publishers website)

  18. Faulkenberry, T. J., Vick, A., & Bowman, K. A. (2018). A shifted Wald decomposition of the numerical size-congruity effect: Support for a late interaction account. Polish Psychological Bulletin, 49, 391-397, doi: 10.24425/119507

  19. Faulkenberry, T. J., Witte, M., & Hartmann, M. (2018). Tracking the continuous dynamics of numerical processing: A brief review and editorial. Journal of Numerical Cognition, 4(2), 271-285. doi: 10.5964/jnc.v4i2.179

  20. Faulkenberry, T. J. (2018). Computing Bayes factors to measure evidence from experiments: An extension of the BIC approximation. Biometrical Letters, 55(1), 31-43. doi: 10.2478/bile-2018-0003

  21. Faulkenberry, T. J. (2018). A simple method for teaching Bayesian hypothesis testing in the brain and behavioral sciences. Journal of Undergraduate Neuroscience Education, 16, A126-A130. (publisher's website)

  22. Faulkenberry, T. J. (2017). A single-boundary accumulator model of response times in an arithmetic verification task. Frontiers in Psychology. doi: 10.3389/fpsyg.2017.01225

  23. Faulkenberry, T. J., Cruise, A., & Shaki, S. (2017). Reversing the manual digit bias in two-digit number comparison. Experimental Psychology, 64(3), 191-204. doi: 10.1027/1618-3169/a000365

  24. Sobel, K., Puri, A., Faulkenberry, T.J., & Dague, T. (2017). Visual search for conjunctions of physical and numerical size shows that they are processed independently. Journal of Experimental Psychology: Human Perception & Performance, 43(3), 444-453. doi: 10.1037/xhp0000323

  25. Faulkenberry, T. J. & Tummolini, L. (2016). Commentary: Is there any Influence of Variations in Context on Object-Affordance Effects in Schizophrenia? Perception of Property and Goals of Action). Frontiers in Psychology. doi: 10.3389/fpsyg.2016.01915

  26. Faulkenberry, T. J. (2016). Testing a direct mapping versus competition account of response dynamics in number comparison. Journal of Cognitive Psychology, 28, 825-842. doi: 10.1080/20445911.2016.1191504

  27. Sobel, K., Puri, A., & Faulkenberry, T. J. (2016). Bottom-up and top-down attentional contributions to the size-congruity effect. Attention, Perception, & Psychophysics, 78, 1324-1336. doi: 10.3758/s13414-016-1098-3

  28. Faulkenberry, T. J., Cruise, A., Lavro, D., & Shaki, S. (2016). Response trajectories capture the continuous dynamics of the size congruity effect. Acta Psychologica, 163, 114-123. doi: 10.1016/j.actpsy.2015.11.010

  29. Faulkenberry, T. J. (2016). Decoding the development of mathematical thinking: A review of Development of Mathematical Cognition: Neural Substrates and Genetic Influences by Berch, Geary, and Mann Koepke (Eds.) PsycCRITIQUES, 61(31), 7. doi: 10.1037/A0040434

  30. Faulkenberry, T. J., Montgomery, S., & Tennes, S. (2015). Response trajectories reveal the temporal dynamics of fraction representations. Acta Psychologica, 159, 100-107. doi: 10.1016/j.actpsy.2015.05.013

  31. Faulkenberry, T. J., & Rey, A. (2014). Extending the reach of mousetracking in numerical cognition: A comment on Fischer and Hartmann (2014). Frontiers in Psychology, 5, 1436. doi: 10.3389/fpsyg.2014.01436

  32. Faulkenberry, T. J. (2014). Hand movements reflect competitive processing in numerical cognition. Canadian Journal of Experimental Psychology, 68, 147-151. doi: 10.1037/cep0000021

  33. Faulkenberry, T. J. & Geye, T. (2014). The cognitive origins of mathematics learning disability: A review. The Rehabilitation Professional, 22(1), 9-16.

  34. Faulkenberry, T. J., & Faulkenberry, E. (2013). Teaching integer arithmetic without rules: An embodied approach. Oklahoma Journal of School Mathematics, 5(2), 5-14.

  35. Faulkenberry, T. J. (2013) The conceptual/procedural distinction belongs to strategies, not tasks: A comment on Gabriel et al. (2013). Frontiers in Psychology, 4, 820. doi: 10.3389/fpsyg.2013.00820

  36. Faulkenberry, T. J. & Montgomery, S. (2013). The primacy of fraction components in adults’ numerical judgements. Proceedings of the 40th Annual Meeting of the Research Council on Mathematics Learning, 155-162.

  37. Faulkenberry, T. J. (2013). How the hand mirrors the mind: The embodiment of numerical cognition. Proceedings of the 40th Annual Meeting of the Research Council on Mathematics Learning, 205-212.

  38. Faulkenberry, E., & Faulkenberry, T. J. (2012). Do you see what I see? An exploration of self-perception in the classroom. Proceedings of the 39th Annual Meeting of the Research Council on Mathematics Learning, 121-126.

  39. Faulkenberry, T. J. & Pierce, B. (2011). Mental representations in fraction comparison: Holistic versus component-based strategies. Experimental Psychology, 58, 480-489. doi: 10.1027/1618-3169/a000116

  40. Faulkenberry, T. J. (2011). Individual differences in mental representations of fraction magnitude. Proceedings of the 38th Annual Meeting of the Research Council on Mathematics Learning, 136-143.

  41. Faulkenberry, E., & Faulkenberry, T. J. (2010). Transforming the way we teach function transformations. Mathematics Teacher, 104, 29-33.

  42. Faulkenberry, T. J. (2010). The working memory demands of simple fraction strategies. Proceedings of the 37th Annual Meeting of the Research Council on Mathematics Learning, 84-89.

  43. Faulkenberry, E., & Faulkenberry, T. J. (2006). Constructivism in mathematics education: A historical and personal perspective. The Texas Science Teacher, 35, 17-22.