Links below are for the official published version. If you would like a copy of a paper but cannot access it, please email me ( to request a copy.

  1. Faulkenberry, T. J. (in press). Estimating evidential value from ANOVA summaries: A comment on Ly et al. (2018). To appear in Advances in Methods and Practices in Psychological Science. doi: 10.1177/2515245919872960
  2. Faulkenberry, T. J., Cruise, A., & Shaki, S. (in press). Task instructions modulate unit-decade binding in two-digit number representation. To appear in Psychological Research, doi: 10.1007/s00426-018-1057-9
  3. Faulkenberry, T. J. (2019). A tutorial on generalizing the default Bayesian t-test via posterior sampling and encompassing priors. Communications for Statistical Applications and Methods, 26, 217-238. doi: 10.29220/CSAM.2019.26.2.217
  4. Frampton, A. R., & Faulkenberry, T. J. (2018). Mental arithmetic processes: Testing the independence of encoding and calculation. Journal of Psychological Inquiry, 22, 30-35.
  5. Faulkenberry, T. J., Vick, A. D., & Bowman, K. A. (2018). A shifted Wald decomposition of the numerical size-congruity effect: Support for a late interaction account. Polish Psychological Bulletin, 49, 391-397. doi: 10.24425/119507
  6. Faulkenberry, T. J., Witte, M., & Hartmann, M. (2018). Tracking the continuous dynamics of numerical processing: A brief review and editorial. Journal of Numerical Cognition, /4/(2), 271-285. doi: 10.5964/jnc.v4i2.179
  7. Faulkenberry, T. J. (2018). Computing Bayes factors to measure evidence from experiments: An extension of the BIC approximation. Biometrical Letters, /55/(1), 31-43. doi: 10.2478/bile-2018-0003
  8. Faulkenberry, T. J. (2018). A simple method for teaching Bayesian hypothesis testing in the brain and behavioral sciences. Journal of Undergraduate Neuroscience Education, 16, A126-A130.
  9. Faulkenberry, T. J. (2017). A single-boundary accumulator model of response times in an arithmetic verification task. Frontiers in Psychology. doi: 10.3389/fpsyg.2017.01225
  10. Faulkenberry, T. J., Cruise, A., & Shaki, S. (2017). Reversing the manual digit bias in two-digit number comparison. Experimental Psychology, /64/(3), 191-204. doi: 10.1027/1618-3169/a000365
  11. Sobel, K. V., Puri, A. M., Faulkenberry, T. J., & Dague, T. D. (2017). Visual search for conjunctions of physical and numerical size shows that they are processed independently. Journal of Experimental Psychology: Human Perception & Performance. doi: 10.1037/xhp0000323
  12. Faulkenberry, T. J., & Tummolini, L. (2016). Commentary: Is there any Influence of Variations in Context on Object-Affordance Effects in Schizophrenia? Perception of Property and Goals of Action). Frontiers in Psychology, 7:1915. doi: 10.3389/fpsyg.2016.01915
  13. Faulkenberry, T. J. (2016). Testing a direct mapping versus competition account of response dynamics in number comparison. Journal of Cognitive Psychology, 28, 825-842. doi: 10.1080/20445911.2016.1191504
  14. Sobel, K. V., Puri, A. M., & Faulkenberry, T. J. (2016). Bottom-up and top-down attentional contributions to the size-congruity effect. Attention, Perception, & Psychophysics, 78, 1324-1336. doi: 10.3758/s13414-016-1098-3
  15. Faulkenberry, T. J., Cruise, A., Lavro, D., & Shaki, S. (2016). Response trajectories capture the continuous dynamics of the size congruity effect. Acta Psychologica, 163, 114-123. doi: 10.1016/j.actpsy.2015.11.010
  16. Faulkenberry, T. J., Montgomery, S. A., & Tennes, S. N. (2015). Response trajectories reveal the temporal dynamics of fraction representations. Acta Psychologica, 159, 100-107. doi: 10.1016/j.actpsy.2015.05.013
  17. Faulkenberry, T. J., & Rey, A. R. (2014). Extending the reach of mousetracking in numerical cognition: A comment on Fischer and Hartmann (2014). Frontiers in Psychology, 5:1436. doi: 10.3389/fpsyg.2014.01436
  18. Faulkenberry, T. J. (2014). Hand movements reflect competitive processing in numerical cognition. Canadian Journal of Experimental Psychology, 68, 147-151. doi: 10.1037/cep0000021
  19. Faulkenberry, T. J., & Geye, T. L. (2014). The cognitive origins of mathematics learning disability: A review. The Rehabilitation Professional, 22 (1), 9-16.
  20. Faulkenberry, T. J., & Faulkenberry, E. D. (2013). Teaching integer arithmetic without rules: An embodied approach. Oklahoma Journal of School Mathematics, 5 (2), 5-14.
  21. Faulkenberry, T. J., (2013). The conceptual/procedural distinction belongs to strategies, not tasks: A comment on Gabriel et al. (2013). Frontiers in Psychology, 4:820. doi: 10.3389/fpsyg.2013.00820
  22. Faulkenberry, T. J., & Montgomery, S. A. (2013). The primacy of fraction components in adults’ numerical judgements. In Reeder, S. L. and Matney, G. T. (Eds.). Proceedings of the 40th Annual Meeting of the Research Council on Mathematics Learning (pp. 155-162). Tulsa, OK: RCML
  23. Faulkenberry, T. J. (2013). How the hand mirrors the mind: The embodiment of numerical cognition. In Reeder, S. L. and Matney, G. T. (Eds.). Proceedings of the 40th Annual Meeting of the Research Council on Mathematics Learning (pp. 205-212). Tulsa, OK: RCML
  24. Faulkenberry, E. D., & Faulkenberry, T. J. (2012). Do you see what I see? An exploration of self-perception in the classroom. In S. L. Reeder (Ed.), Proceedings of the 39th Annual Meeting of the Research Council on Mathematics Learning (pp. 121-126). Charlotte, NC: RCML.
  25. Faulkenberry, T. J., & Pierce, B. H. (2011). Mental representations in fraction comparison: Holistic versus component-based strategies. Experimental Psychology, 58, 480-489. doi: 10.1027/1618-3169/a000116
  26. Faulkenberry, T. J. (2011). Individual differences in mental representations of fraction magnitude. In S. Reeder (Ed.) Proceedings of the 38th Annual Meeting of the Research Council on Mathematics Learning (pp. 136-143). Cincinnati, OH: RCML.
  27. Faulkenberry, E. D., & Faulkenberry, T. J. (2010). Transforming the way we teach function transformations. Mathematics Teacher, 104, 29-33.
  28. Faulkenberry, T. J. (2010). The working memory demands of simple fraction strate- gies. In S. Reeder (Ed.) Proceedings of the 37th Annual Meeting of the Research Council on Mathematics Learning (pp. 84-89). Conway, AR: RCML.
  29. Faulkenberry, E. D. & Faulkenberry, T. J. (2006). Constructivism in mathematics education: A historical and personal perspective. The Texas Science Teacher, 35, 17- 22.

Created: 2019-11-14 Thu 16:40